# Exercise Sheet 13

#### Discrete Mathematics I - SoSe17

Lecturer Jean-Philippe Labbé

Tutors Johanna Steinmeyer and Patrick Morris

Due date NOT TO BE SUBMITTED

#### Problem 1

Find orderings of the vertices of the graph of the cube for which the greedy algorithm requires 2, 3, and 4 colors respectively.

# Problem 2 (Brooks' Theorem)

Prove that the chromatic number of a connected graph G with maximum vertex-degree  $\Delta$  is at most  $\Delta$ , excepted if G is a complete graph or an odd cycle, in which case  $\chi(G) = \Delta + 1$ .

## Problem 3

Prove that the Petersen graph is not planar.

### Problem 4

Let G be a 3-connected plane graph such that all its regions are bounded by pentagons or hexagons (they have either 5 or 6 bounding edge-curves)

- a) Use Euler's formula to show that G must have at least 12 pentagonal regions.
- b) Prove that if all vertices have degree 3, then G has exactly 12 pentagonal faces.

### Problem 5

Let G be a plane graph with strictly less than 12 regions such that each vertex has degree at least 3.

- a) Use Euler's formula to prove that G has a region bounded by at most four edges.
- b) Give an example to show that part 1) fails if G has 12 regions.