Exercise Sheet 1

Discrete Mathematics I - SoSe17

Lecturer Jean-Philippe Labbé

Tutors Johanna Steinmeyer and Patrick Morris

Due date 26 April 2017 -- 16:00

Problem 1

a. Prove that the composition of two injective functions is injective. Prove that the composition of two surjective functions is surjective.

b. Prove that a function $f: A \to B$ is injective if and only if for all functions $g, h: C \to A$, $f \circ g = f \circ h$ implies g = h.

c. Prove that a function $f:A\to B$ is surjective if and only if for all functions $g,h:B\to C, g\circ f=h\circ f$ implies g=h.

Problem 2

- a. Give an example of a function $f:A\to A$ such that $f^2=f\circ f=f$ and f is not the identity function.
- b. Prove that if a function $f:A\to A$ is not the identity function and $f^2=f$, then f is not invertible.
- c. Give an example of an invertible function $f:A\to A$, such that $f^3=f$, yet $f^2=f\circ f\neq f$.
- d. Give an example of a noninvertible function $f:A\to A$, such that $f^3=f$, yet $f^2=f\circ f\neq f$.

Problem 3

Prove that the set of odd natural numbers is infinite.

Problem 4

Which is larger $99^{50} + 100^{50}$ or 101^{50} ? Why?

Problem 5

A Berlin pizzeria advertises that they offer over a million possible pizzas. How many different toppings must they offer if their advertisement is true?

Problem 6

A word is a concatenation of letters. A palindrome is a word that reads the same forward and backwards (for example, civic and radar). Find the number of n letter words that **are not** palindromes. (Hint: consider two cases depending on the parity of n).

Problem 7

Find the number of 7 letter words that end with an "a" or do not contain the letter "a".

Problem 8

Let $n \geq 3$. A group of n people, including Alice, Bob, and Carl, is to be seated around a table. Bob refuses to sit next to either Alice or Carl. Find the number of configurations that respect Bob's restriction.

Problem 9

- 1. How many different words can be obtained by permuting the letters of the word humuhumunukunukuapuaa?
- 2. How many license plates of the form *ABC 123*, i.e. three letters followed by three numbers, are there?
- 3. In how many ways can we select a black square and a white square on a chessboard in such a way that the two squares are not in the same column or the same row?

Problem 10

Assume that $S \subseteq 2^{[8]}$ is such that each subset in S has cardinality 4 and each element of [8] belongs to exactly 3 subsets in S. How many subsets are there in S? Write down such an S.