Formative Midterm Exam

Discrete Mathematics I - SoSe17

Due date 20 June 2017 -- 16:00

This is a Formative Midterm Exam. Follow the instructions below.

- 1) You should solve all the exercises below **without** usage of any reference material.
- 2) In order to practice for the Klausur, you should take at most **90** minutes to complete the exercises.
- 3) Provide **complete** justifications of solutions. You are allowed to cite results proven in class, unless you are asked to prove it.
- 4) The solutions to the problems should be written **directly on this document**. If necessary, you can join A4 blank sheets for longer solutions.
- 5) The solution sheets should be handed in **stapled**.
- 6) Drafts and sketches of solutions should be written on separate sheets and **not submitted**; only final clean solutions should be submitted.
- 7) Arguments that should not be evaluated should be crossed-out with an "X" or be strikethrough once.

Any submission that do not follow the above rules will not be evaluated.

Evaluation

Problem 1	10
Problem 2	10
Problem 3	15
Problem 4	20
Problem 5	15
Problem 6	15
Problem 7	15
Total	100

Let $n \ge 0$. Give a combinatorial proof of the following equality

$$\sum_{k=0}^{n} k \binom{n}{k} = n2^{n-1}.$$

[/10 pts]

Let $m \ge 1$ and $a_i \in \mathbb{N} \setminus \{0\}$, for all $i \in [m]$. Show that there exist integer numbers j, k with $0 \le j < k \le m$ such that $\sum_{i=j+1}^{k} a_i$ is divisible by m.

/10 pts]

[

Give the number of integer solutions to the following (in)equalities.

- a) $x_1 + x_2 + x_3 \le 6$, where $x_1, x_2, x_3 \ge 0$.
- b) $x_1 + 2x_2 + 5x_3 = 22$, where $x_1, x_2, x_3 \ge 1$.

[/15 pts]

Solve the following recurrence relations.

a) $R_n = R_{n-1} + 2R_{n-2} + (-1)^n$, $(n \ge 2)$, where $R_0 = R_1 = 1$.

 $/20 \mathrm{~pts}]$

[

Let $n \in \mathbb{N}$. Give a formula for the number of strings consisting of 0,1, or 2's of length n, such that all symbol appears an odd number of times.

[/15 pts]

Prove that every finite join-semilattice with $\hat{0}$ is a lattice.

[/15 pts]

True or False?

- a) $\binom{r}{k} = (-1)^k \binom{k-r-1}{k}, \quad \forall k \in \mathbb{Z}.$
- b) Let $f: P \to P$ be an order preserving bijection and $|P| < \infty$. The inverse f^{-1} is order preserving.
- c) 101^{50} is smaller than $99^{50} + 100^{50}$.
- d) $1^3 + 2^3 + \dots + n^3 = \binom{n}{2}^2$.
- e) Let $S := \{ \emptyset, a, b, aa, ab, ba, bb, aba, abb, aab, bab, abab \}$ and define $s \triangleleft t \quad \Leftrightarrow s$ is a subsequence of t. The poset (S, \triangleleft) is a lattice.
 - [/(3x5) pts, -2pt per wrong answer, 1pt for no answer, minimum: 0pts]

a)	
b)	
c)	
d)	
e)	