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material.
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you use from the lectures.
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your name on the top right corner (else the sheet is considered void).

4) Drafts and sketches of solutions should be written on separate sheets and
not submitted; only final solutions should be submitted.

5) Arguments that should not be evaluated should be crossed-out with an "X"
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Problem 1
Give (and justify!) in how many ways it is possible to distribute

a) 6 undistinguishable objects in 3 undistinguishable boxes.

b) 6 undistinguishable objects in 3 labeled boxes.

c) 6 labeled objects in 3 undistinguishable boxes.

d) 6 labeled objects in 3 labeled boxes.

[ /15 pts]

a) This is equal to the number of partitions of 6 into three possibly empty parts: 6 + 0 + 0 =
5 + 1 + 0 = 4 + 2 + 0 = 3 + 3 + 0 = 4 + 1 + 1 = 3 + 2 + 1 = 2 + 2 + 2. There are 7 ways.

b) This is equal to arranging 6 red balls and 2 separators on a line. We need to choose the
location of the 2 separators among 8 positions:

(︀
8
2

)︀
= 28 ways.

c) Using a), for each partition, we decide which labeled object goes into each part:
- 6+0+0: 1 way
- 5+1+0: 6 ways
- 4+2+0:

(︀
6
2

)︀
ways

- 3+3+0: 1
2

(︀
6
3

)︀
ways

- 4+1+1:
(︀
6
2

)︀
ways

- 3+2+1:
(︀
6
3

)︀(︀
3
2

)︀
ways

- 2+2+2: 1
6

(︀
6
2

)︀(︀
4
2

)︀
ways

By the A.P. we get 1 + 6 + 15 + 10 + 15 + 60 + 15 = 122 ways.
d) By the M.P. there are 36 ways.
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Problem 2
For every 𝑛 ≥ 1, give an explicit bijection between the collection of subsets of [𝑛] with even
cardinality and the collection subsets of [𝑛] with odd cardinality.

[ /15 pts]

Case 𝑛 ≡ 1 mod 2: Let Φ : 2[𝑛] → 2[𝑛] be defined as Φ(𝑆) = [𝑛]∖𝑆, for all 𝑆 ∈ 2[𝑛]. If |𝑆| ≡ 0
mod 2, then |Φ(𝑆)| ≡ 1 mod 2 and if |𝑆| ≡ 1 mod 2, then |Φ(𝑆)| ≡ 0 mod 2. The function Φ
is the complementation operation and every set has a complement and two sets having the same
complement are equal, i.e. Φ is a bijection. Therefore using the above observations, restricting Φ
to even or odd subsets give the desired bijection.

Case 𝑛 ≡ 0 mod 2: Let Ψ : 2[𝑛] → 2[𝑛] be defined as

Ψ(𝑆) ↦→

⎧⎨⎩([𝑛] ∖ 𝑆) ∪ {𝑛} if 𝑛 ∈ 𝑆

([𝑛] ∖ 𝑆) ∖ {𝑛} if 𝑛 ̸∈ 𝑆

Similarly as Φ, Ψ makes even subsets into odd subsets and vice-versa. Further, Ψ sends even
subsets containing 𝑛 to odd subsets that contain 𝑛 and similarly for subsets not containing 𝑛. Ob-
serving again that Ψ is a bijection (injectivity and surjectivity are obtained from the complement
map again), we get the desired bijection.�
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Problem 3
Let 𝑛 ∈ N. Consider the following three 2-dimensional vectors 𝑁𝑊 := (−1, 1), 𝑁𝐸 := (1, 1) and
𝐽 := (0, 2). We form walks from the origin (0, 0) to the horizontal line 𝑦 = 𝑛 using a succession
of the three vectors as steps. Let 𝑊𝑛 be the number of distinct walks so obtained. For 𝑛 = 0, we
set 𝑊0 = 1 for the empty walk, and 𝑊−1 = 0.

a) How many distinct walks are there for 𝑛 ∈ {1, 2, 3, 4}?

b) Show that lim𝑛→∞
𝑊𝑛+1

𝑊𝑛
= 1 +

√
2.

c) Prove that

[︃
𝑊𝑛 𝑊𝑛−1

𝑊𝑛−1 𝑊𝑛−2

]︃
=

[︃
2 1

1 0

]︃𝑛

, for all 𝑛 ≥ 1.

d) Finally deduce that 𝑊𝑛𝑊𝑛−2 −𝑊 2
𝑛−1 = (−1)𝑛, for 𝑛 ≥ 1.

[ /20 pts]

a) 𝑊1 = 2, 𝑊2 = 5, 𝑊3 = 12, 𝑊4 = 29
b) Using the characteristic polynomial method, we get 𝜒(𝑊 ) = 𝑥2−2𝑥−1 = (𝑥−1−

√
2)(𝑥−

1 +
√

2). Therefore the general solution is 𝑊𝑛 = 𝛼(1 +
√

2)𝑛 +𝛽(1−
√

2)𝑛 for some fixed 𝛼, 𝛽 ∈ R.
Hence, using the fact that |1 −

√
2| < 1,

lim
𝑛→∞

𝑊𝑛+1

𝑊𝑛
= 1 +

√
2.

c) If 𝑛 = 1, then [︃
𝑊1 𝑊0

𝑊0 𝑊−1

]︃
=

[︃
2 1

1 0

]︃1

.

which concludes the base case of the induction on 𝑛. Now assume the result to hold for 𝑛− 1. We
have [︃

2 1

1 0

]︃𝑛

=

[︃
2 1

1 0

]︃[︃
𝑊𝑛−1 𝑊𝑛−2

𝑊𝑛−2 𝑊𝑛−3

]︃
=

[︃
2𝑊𝑛−1 + 𝑊𝑛−2 2𝑊𝑛−2 + 𝑊𝑛−3

𝑊𝑛−1 𝑊𝑛−2

]︃
.

When 𝑛 ≥ 2, walks can finish with either with NW, NE or J, meaning that we get the recursion
𝑊𝑛 = 2𝑊𝑛−1 + 𝑊𝑛−2 by the A.P.. Using it in the above, we get[︃

2 1

1 0

]︃𝑛

=

[︃
𝑊𝑛−2 𝑊𝑛−1

𝑊𝑛−1 𝑊𝑛−2

]︃
.

d) The determinant of

[︃
2 1

1 0

]︃𝑛

is (−1)𝑛. Therefore, by b) we get that 𝑊𝑛𝑊𝑛−2 −𝑊 2
𝑛−1 =

(−1)𝑛.
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Problem 4
Let ℬ𝑛 := (2[𝑛],⊆) be the poset of subsets of [𝑛] ordered by inclusion.

a) Give the definition of the join and meet operations in a poset. Further, give
the definition of a lattice.

b) Show that ℬ𝑛 is a lattice and express the join and the meet operations in
terms of the poset ℬ𝑛.

c) Let 𝑝 ∈ ℬ𝑛. Show that there exists an element 𝑞 ∈ ℬ𝑛 such that 𝑝∧𝑞 = 0̂ = ∅
and 𝑝 ∨ 𝑞 = 1̂ = [𝑛].

d) Show that the element 𝑞 with the property in c) is unique.

e) Let 𝑝𝑐 := 𝑞 denote the above unique element. Show that the map from ℬ𝑛

to itself defined by 𝑝 ↦→ 𝑝𝑐 is an order reversing morphism of posets.

[ /15 pts]

a) Let 𝑝, 𝑞 ∈ 𝑃 , for some poset 𝑃 . The join of 𝑝 and 𝑞 is the least upper bound of 𝑝 and 𝑞 (if
it exists). The meet of 𝑝 and 𝑞 is the greatest lower bound of 𝑝 and 𝑞 (if it exists). A lattice is a
poset 𝑃 where meet and join exist for all pair 𝑝, 𝑞 ∈ 𝑃 .

b) Let 𝑝, 𝑞 ∈ ℬ𝑛. The join 𝑝∨ 𝑞 is 𝑝∪ 𝑞: it is an upper bound and any subset containing 𝑝 and
𝑞 has to contain 𝑝∪ 𝑞. The meet 𝑝∧ 𝑞 is 𝑝∩ 𝑞: the intersection is contained in both (hence a lower
bound) and any lower bound of 𝑝 and 𝑞 is contained in 𝑝 ∩ 𝑞.

c) Let 𝑞 := [𝑛] ∖ 𝑝. Then 𝑝 ∧ 𝑞 = ∅ and 𝑝 ∨ 𝑞 = [𝑛].
d) Take any other subset 𝑟ℬ𝑛 which is not equal to 𝑞. Then either there is an element 𝑖 of 𝑞

not in 𝑟, in which case 𝑝 ∨ 𝑟 will not contain that element 𝑖 so that 𝑝 ∨ 𝑟 ̸= [𝑛]. Otherwise, there
is an element 𝑗 of 𝑝 in 𝑟, in which case 𝑝 ∧ 𝑟 contains at least 𝑗 hence cannot be ∅. Hence 𝑞 is
unique.

e) Let 𝑎, 𝑏 ∈ ℬ𝑛 be such that 𝑎 ⊆ 𝑏. Then 𝑎𝑐 = ([𝑛] ∖ 𝑎) ⊇ ([𝑛] ∖ 𝑏) = 𝑏𝑐. �
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Problem 5
Give the chromatic polynomial of the following graphs:

a) The complete graph 𝐾𝑛, with 𝑛 ≥ 3.

b) The null graph 𝑁𝑛, with 𝑛 ≥ 1.

c) The cycle graph 𝐶4.

d) The graph 𝐺 below.

𝐴

𝐵

𝐶

𝐷

𝐸

𝐹

[ /15 pts]

Let 𝑘 be the number of colors.
a) Since all vertices are connected by an edge, no two vertices can have the same color. Start

by coloring the vertex 1 (𝑘 choices), then color the vertex 2 (𝑘 − 1 choices), etc. up to vertex 𝑛
(𝑘 − 𝑛 + 1 choices), by the M.P. we get 𝜒(𝐾𝑛) = 𝑘!

(𝑘−𝑛)! .
b) By the M.P. there are 𝑘 choices, 𝑛 times, to color the 𝑛 vertices. Thus 𝜒(𝑁𝑛) = 𝑘𝑛.
c) Using the Deletion-Contraction principle: 𝜒(�) = 𝜒(𝐶) − 𝜒(△), where 𝐶 is a chain-graph

with 4 vertices. Since 𝐶 is a tree with 4 vertices, we have 𝜒(𝐶) = 𝑘(𝑘 − 1)3. By a) we get
𝜒(△) = 𝑘(𝑘 − 1)(𝑘 − 2). Thus 𝜒(�) = 𝑘(𝑘 − 1)(𝑘2 − 3𝑘 + 3).

d) Using c), it remains to choose the colors of 𝐴 and 𝐹 . Both have 𝑘 − 2 choices or colors.
Thus 𝜒(𝐺) = 𝑘(𝑘 − 1)(𝑘 − 2)2(𝑘2 − 3𝑘 + 3).
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Problem 6
Let 𝑆𝑛 be the number of strings of 0, 1, and 2’s of length 𝑛 ≥ 0 with all of the following four
properties:

1) an even number of 0’s (maybe none),
2) an odd number of 1’s,
3) starting and ending with a 2,
4) using at least three 2’s.

Give a closed formula for 𝑆𝑛.

[ /20 pts]

First ignore the first and last 2 appearing in each string. Let 𝒵𝑒(𝑥),𝒪𝑒(𝑥), and 𝒯 𝑒(𝑥) be the
generating functions for

∙ string of 0’s of even length

∙ string of 1’s of odd length

∙ string of 2’s with length at least 1

The strings we need are formed by shuffling one string of 0’s, one string of 1’s and one string
of 2’s from the above set, hence multiplying the exponential generating function for each of these
family of strings will give the exponential generating function of the desired strings, up to the first
and last zero (that we ignore for now).

We have

𝒵𝑒(𝑥) = 1 +
𝑥2

2
+

𝑥4

4!
+ · · · =

𝑒𝑥 + 𝑒−𝑥

2
,

since there is one way to create a string of even cardinality and that the string could be empty.
Similarly,

𝒪𝑒(𝑥) = 𝑥 +
𝑥3

3!
+

𝑥5

5!
+ · · · =

𝑒𝑥 − 𝑒−𝑥

2
.

Finally,
𝒯 𝑒(𝑥) = 𝑒𝑥 − 1.

We multiply the exponential generating functions:

𝒵𝑒(𝑥)𝒪𝑒(𝑥)𝒯 𝑒(𝑥) =
𝑒𝑥 − 1

4
(𝑒2𝑥 − 𝑒−2𝑥).

Writing differently:
𝑒𝑥 − 1

4
(𝑒2𝑥 − 𝑒−2𝑥) =

1

4
(𝑒3𝑥 − 𝑒2𝑥 − 𝑒−𝑥 + 𝑒−2𝑥).

The coefficient of 𝑥𝑛 in this exponential generating function is⎧⎨⎩ 3𝑛−1
4 if 𝑛 is even,

3𝑛−2𝑛+1+1
4 if 𝑛 is odd.

This number gives the number of ways to form the strings of 0’s, 1’s and 2’s of length 𝑛 with the
above properties. We now need to add the beginning and ending 2 so that we have at least three
2’s and satisfy all conditions. Thus we get:

𝑆𝑛 =

⎧⎨⎩ 3𝑛−2−1
4 if 𝑛 is even,

3𝑛−2−2𝑛−1+1
4 if 𝑛 is odd,

for 𝑛 ≥ 2 and 𝑆1 = 𝑆0 = 0.
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