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1) You should solve all the exercises below without usage of any reference
material.

2) Provide complete justifications of solutions and state precisely any theorems
you use from the lectures.

3) The solutions to the problems should be written directly on this docu-
ment. If necessary, you can join A4 blank sheets for longer solutions with
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Problem 1
Let 𝑛 ≥ 𝑗 ≥ 0. Prove the following equality

𝑛∑︁
𝑘=𝑗

(︂
𝑛

𝑘

)︂(︂
𝑘

𝑗

)︂
= 2𝑛−𝑗

(︂
𝑛

𝑗

)︂
.

[ /15 pts]

Bijective proof: 1) The RHS counts the number of pairs (𝐴,𝐵), where 𝐴 ⊆ [𝑛−𝑗] and 𝐵 ∈
(︀
[𝑛]
𝑗

)︀
.

There are 2𝑛−𝑗 choices for 𝐴 and
(︀
𝑛
𝑗

)︀
choices for 𝐵. By the M.P. there are 2𝑛−𝑗

(︀
𝑛
𝑗

)︀
pairs (𝐴,𝐵).

2) The LHS counts the number of pairs (𝐶,𝐷), where 𝐶 ⊆ [𝑛], |𝐶| ≥ 𝑗, and 𝐷 ⊆ 𝐶 such that
|𝐷| = 𝑗. Partition the pairs depending on the cardinality 𝑘 of 𝐶. For a fixed 𝑘, there are

(︀
𝑛
𝑘

)︀
choices for 𝐶, then there are

(︀
𝑘
𝑗

)︀
choices for the set 𝐷. By the A.P. and M.P. we have

𝑛∑︁
𝑘=𝑗

(︂
𝑛

𝑘

)︂(︂
𝑘

𝑗

)︂
such pairs.

3) Let 𝑓((𝐴,𝐵)) ↦→ (𝐴 ∪ 𝐵,𝐵), for a pair (𝐴,𝐵) as above. Clearly, this map is injective and
any pair of type (𝐶,𝐷) above is the image of some pair (𝐴,𝐵). Hence, 𝑓 is a bijection and both
sets of pairs have the same cardinality and the equality follows. �

Algebraic proof: We use the definition of binomial coefficients to get

𝑛∑︁
𝑘=𝑗

(︂
𝑛

𝑘

)︂(︂
𝑘

𝑗

)︂
=

𝑛∑︁
𝑘=𝑗

𝑛!𝑘!

(𝑛− 𝑘)!𝑘!(𝑘 − 𝑗)!𝑗!
.

We can simplify the 𝑘! and take out a
(︀
𝑛
𝑗

)︀
term:

=

𝑛∑︁
𝑘=𝑗

(︂
𝑛

𝑗

)︂
(𝑛− 𝑗)!

(𝑛− 𝑘)!(𝑘 − 𝑗)!
.

Taking the binomial coefficient out of the sum and rewriting the summand as a binomial coefficient,
we get:

=

(︂
𝑛

𝑗

)︂ 𝑛∑︁
𝑘=𝑗

(︂
𝑛− 𝑗

𝑘 − 𝑗

)︂
.

Finally, rewrite the sum by changing the index of the sum, and use the binomial theorem to get:

=

(︂
𝑛

𝑗

)︂ 𝑛−𝑗∑︁
𝑘=0

(︂
𝑛− 𝑗

𝑘

)︂
𝐵.𝑇.
=

(︂
𝑛

𝑗

)︂
2𝑛−𝑗 . �

2



Problem 2
Given a partition 𝜆 = (𝜆1 ≥ 𝜆2 ≥ · · · ≥ 𝜆𝑘) of 𝑛 ≥ 1, its conjugate partition 𝜆* is the partition
obtained by taking the transpose of the Ferrers diagram of 𝜆. A partition is self-conjugate if 𝜆* = 𝜆.
Prove that the number of self-conjugate partitions of 𝑛 is equal to the number of partitions of 𝑛
into distinct odd parts.

[ /15 pts]

1) Let 𝑆𝑛 be the set of self-conjugate partitions of 𝑛. Let 𝑂𝑛 be the set of partitions of 𝑛 into
distinct odd parts.

2) The bijection between 𝑆𝑛 and 𝑂𝑛 is described as follows:
Take a self-conjugate partition 𝜆 and consider its Ferrers diagram. We decompose the Ferrers

diagram into right-angled hooks. The first hook takes all squares in the first row and first column,
the second hooks takes the remaining squares in the second row and second column and so on.
The image of 𝜆 is then the partition given by the size of the blocks.

3) The size of the 𝑖-th part in the image is 2𝜆𝑖 − (2𝑖+ 1). If two parts have the same size, we
get a contradiction with the fact that we started with a partition: the parts will not be decreasing.
The size of the 𝑖-th part is odd because we started with a self-conjugate partition.

4) This map is clearly injective by construction.
5) This map is surjective: given a partition with distinct odd parts, assemble self-conjugate

hooks with the desired sizes and glue them appropriatly to get a Ferrers diagram. Because the
parts were self-conjugate, the result will be.

For example, for 𝜆 = (5, 4, 3, 2, 1), the 15 boxes below are labeled with the index of the part
where it is sent: (9, 5, 1) (nine 1’s, five 2’s, one 3).

1 1 1 1 1

1 2 2 2

1 2 3

1 2

1
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Problem 3
Consider the three tetrominos:

Let 𝑛 ≥ 0 and set 𝑇0 = 1.

a) Obtain a recurrence relation for the number 𝑇𝑛 of tilings of a 2×2𝑛 rectangle
using the above pieces (rotation and reflection allowed).

b) Derive an homogeneous finite order linear recurrence relation with constant
coefficients for 𝑇𝑛.

c) Give the appropriate initial conditions for the recurrence relation.

d) Give the general solution of this recurrence relation (do not solve it fur-
ther).

[ /20 pts]

a) Assume we tiled the 2 × 2𝑛 rectangle, and consider the first column containing 2 squares.
There are four possibilities for which tiles appear in that first column:

1) . . . 2) . . . 3) . . . 4) . . .

In the first two cases, there are exactly 𝑇𝑛−2 and 𝑇𝑛−1 possibilities to get the tiling, respectively.
For the third case, in order to get a tiling, eventually it has to contain the tetromino

or
.

Hence, we partition such tiling depending on the size of the rectangle after the first appearance of
one of these two tetrominos (exactly with the above positions). We get

∑︀𝑛−2
𝑖=0 𝑇𝑖 such tilings. For

the fourth case, it is the same situation, but mirrored. Therefore, the recurrence relation is

𝑇𝑛 = 𝑇𝑛−1 + 𝑇𝑛−2 + 2

𝑛−2∑︁
𝑖=0

𝑇𝑖.

b) Apply the symbolic differenciation method:

𝑇𝑛+1 = 𝑇𝑛 + 𝑇𝑛−1 + 2

𝑛−1∑︁
𝑖=0

𝑇𝑖, −(𝑇𝑛) = −

(︃
𝑇𝑛−1 + 𝑇𝑛−2 + 2

𝑛−2∑︁
𝑖=0

𝑇𝑖

)︃
,

yields
𝑇𝑛+1 − 𝑇𝑛 = 𝑇𝑛 − 𝑇𝑛−2 + 2𝑇𝑛−1.

Equivalently, 𝑇𝑛 = 2𝑇𝑛−1 + 2𝑇𝑛−2 − 𝑇𝑛−3.
c) The initial conditions are 𝑇0 = 1, 𝑇1 = 1, and 𝑇2 = 4.
d) The characteristic polynomial is 𝜒(𝑇 ) = 𝑥3 − 2𝑥2 − 2𝑥 + 1 = (𝑥 + 1)(𝑥 − 𝑎)(𝑥 − 𝑏), where

𝑎 = 3+
√
5

2 and 𝑏 = 3−
√
5

2 . Hence 𝑇𝑛 = 𝛼(−1)𝑛 + 𝛽𝑎𝑛 + 𝛾𝑏𝑛, for some 𝛼, 𝛽, 𝛾 ∈ R.
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Problem 4
Let 𝑃 be a finite poset.

a) State the definitions of rank, antichain, minimal element and greatest ele-
ment of 𝑃 .

b) Let 𝛼(𝑃 ) be the maximum size of an antichain of 𝑃 and 𝛽(𝑃 ) be the maxi-
mum size of a chain of 𝑃 . Show that 𝛼(𝑃 )𝛽(𝑃 ) ≥ |𝑃 |.

[ /15 pts]

a)

∙ The rank of a poset is the number of covers in a inclusion maximal chain.

∙ An antichain of a poset 𝑃 is a subset 𝐴 ⊆ 𝑃 such that ∀𝑥, 𝑦 ∈ 𝐴, neither 𝑥 ≤ 𝑦 nor 𝑦 ≤ 𝑥
hold.

∙ A minimal element of 𝑃 is an element 𝑚 ∈ 𝑃 such that there does not exist any 𝑚 ̸= 𝑥 ∈ 𝑃
with the property that 𝑥 ≤ 𝑚.

∙ A greatest element of 𝑃 is an element 1̂ ∈ 𝑃 such that 𝑥 ≤ 1̂, ∀𝑥 ∈ 𝑃 .

b) We show it by induction on the rank of 𝑃 . If it is zero, then 𝑃 is an antichain and
𝛼(𝑃 ) = |𝑃 |, 𝛽(𝑃 ) = 1. Therefore 𝛼(𝑃 )𝛽(𝑃 ) = |𝑃 | · 1 ≥ |𝑃 | holds.

Otherwise, assume it holds for posets of rank 𝑟 − 1 and assume that 𝑃 has rank 𝑟 > 0. Let
𝑀 := {𝑚 ∈ 𝑃 : 𝑚 is minimal element}. Since 𝑃 is finite 𝑀 is non-empty. Let 𝑃 ′ := 𝑃 ∖𝑀 be the
poset induced by removing the minimal elements. The poset 𝑃 ′ is finite and has rank 𝑟−1. Hence
by the induction hypothesis, 𝛼(𝑃 ′)𝛽(𝑃 ′) ≥ |𝑃 ′| = |𝑃 |−|𝑀 |. Equivalently, |𝑀 |+𝛼(𝑃 ′)𝛽(𝑃 ′) ≥ |𝑃 |.
Since 𝑃 ′ is a subposet of 𝑃 , we have 𝛼(𝑃 ′) ≤ 𝛼(𝑃 ). Together with the fact that the set 𝑀 is an
antichain by its definition, we get 𝛼(𝑃 ) + 𝛼(𝑃 )𝛽(𝑃 ′) ≥ |𝑃 |. Finally, since 𝛽(𝑃 ) = 𝛽(𝑃 ′) + 1 by
construction, we get the result.�
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Problem 5
a) State Euler’s formula for the number of faces (or regions) in a connected

simple plane graph.

b) Deduce that every planar simple graph 𝐺 has vertex 𝑣 whose degree is at
most 5.

[ /10 pts]

a) Let 𝐺 be a connected plane graph with 𝑛 vertices and 𝑒 edges. The number 𝑟 of regions (or
faces) determined by 𝐺 is 𝑟 = 𝑒− 𝑛+ 2.

b) Let 𝑓1, 𝑓2, . . . , 𝑓𝑟 be the number of edge-curves on the boundary of the 𝑟 regions of 𝐺. By
double counting, we get

∑︀𝑟
𝑖=1 𝑓𝑖 = 2𝑒. Since 𝐺 is simple, no 𝑓𝑖’s is smaller than 3. Therefore∑︀𝑟

𝑖=1 𝑓𝑖 ≥ 3𝑟 ⇐⇒ 2𝑒 ≥ 3𝑟. By Euler’s formula, we get 2𝑒 ≥ 3(𝑒−𝑛+2) ⇐⇒ 2𝑒 ≥ 3𝑒−3𝑛+6 ⇐⇒
3𝑛 − 6 ≥ 𝑒. By the Handshake lemma, we get

∑︀
𝑣∈𝑉 deg(𝑣) = 2𝑒 ≤ 6𝑛 − 12. Thus the average

1
𝑛

∑︀
𝑣∈𝑉 deg(𝑣) is strictly smaller than 6. That is, there exists a vertex of 𝐺 whose degree is at

most 5. �
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Problem 6
Prove that if a graph 𝐺 has two edge-disjoint spanning trees, then that graph is 2-edge-connected.

[ /10 pts]

If 𝐺 has two edge-disjoint spanning trees, we get the following fact from the properties of trees.
For every 𝑥 ̸= 𝑦 ∈ 𝑉 , there are two edge-disjoint path from 𝑥 to 𝑦: 1 per spanning tree.
Therefore, if we remove any 1 edge of 𝐸, the graph is still connected. This implies that the

edge-connectivity of 𝐺 is at least 2. Thus 𝐺 is 2-edge-connected. �
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Problem 7
True or False?

a) 𝑥1+𝑥2+𝑥3+𝑥4 = 8, with 𝑥1, 𝑥2 ≥ 2, 𝑥3 ≥ 1, 0 ≤ 𝑥4 ≤ 4 has 21 nonnegative
integral solutions.

b) Every lattice has a greatest element.

c) Every total order with greatest and least element is a well-order.

d) The exponential generating function for the permutations whose cycle nota-
tion uses exactly 2 cycles is log(1− 𝑥)2.

e) The graph of the 5-dimensional hypercube is not Hamiltonian but it is Eu-
lerian.

[ /(3x5) pts, -2pt per wrong answer, 1pt for no answer, minimum: 0pts]

a)

False

b)

False

c)

False

d)

False

e)

False
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