Computation of Cantorian tableaux Permutation Patterns 2011

Jean-Philippe Labbé

20 June 2011

History

- -Brlek, Mendès France, Robson & Rubey, *Cantorian Tableaux and Permanents*, L'Enseignement Mathématique (2004)
- -Mendès France, *Cantorian Tableaux revisited*, Funct. Approx. Comment. Math. (2007)
- -Brlek, Labbé, Mendès France, *Combinatorial variations on Cantor's diagonal*, (submitted), (2011) preprint available on *arxiv.org*

Existence of transcendental numbers

We write the development in base s>1 of the algebraic numbers in the interval (0,1) in a tableau $\mathcal T$:

Existence of transcendental numbers

We write the development in base s>1 of the algebraic numbers in the interval (0,1) in a tableau \mathcal{T} :

S	$ s^{-1} $			s^{-4}		
0	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	
0	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	• • •
0	a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅	• • •
0	a ₄₁	a ₄₂	<i>a</i> ₄₃	<i>a</i> 44	<i>a</i> ₄₅	• • •
0	a ₅₁	a ₅₂	<i>a</i> 53	<i>a</i> 54	a ₅₅	• • •
:	:	:	:	:	:	٠

Existence of transcendental numbers

We write the development in base s>1 of the algebraic numbers in the interval (0,1) in a tableau \mathcal{T} :

S	$ s^{-1} $	s^{-2}	s^{-3}	s^{-4}	s^{-5}	
0	a ₁₁	a ₁₂ a ₂₂ a ₃₂ a ₄₂	a ₁₃	a ₁₄	a ₁₅	
0	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	• • •
0	a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅	• • •
0	a ₄₁	a ₄₂	a 43	<i>a</i> 44	<i>a</i> 45	• • •
0	a ₅₁	<i>a</i> ₅₂	<i>a</i> 53	<i>a</i> 54	<i>a</i> 55	• • •
:	:	:	:	÷	:	٠

We create the number $b = b_1 b_2 b_3 b_4 b_5 \cdots$ where $b_i \neq a_{ii}$

Every row determines a *word* $a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Definition

The set of row-words is noted L.

Every row determines a *word* $a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Definition

The set of row-words is noted L.

The *permanent* of a matrix $n \times n$ defined on a ring is :

$$\sum_{\pi\in S_n}a_{\pi(1)1}a_{\pi(2)2}\cdots a_{\pi(n)n}.$$

Every row determines a *word* $a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Definition

The set of row-words is noted L.

The *permanent* of a matrix $n \times n$ defined on a ring is :

$$\sum_{\pi\in S_n}a_{\pi(1)1}a_{\pi(2)2}\cdots a_{\pi(n)n}.$$

Naturally, we define the permanent of a tableau T

Definition (Brlek et al. (2004))

The permanent of a tableau T is the set of words

$$Perm(T) = \bigcup_{\pi \in S_n} a_{\pi(1)1} a_{\pi(2)2} \cdots a_{\pi(n)n}$$

Every row determines a *word* $a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Definition

The set of row-words is noted L.

Definition (Brlek et al. (2004))

The permanent of a tableau T is the set of words

$$Perm(T) = \bigcup_{\pi \in S_n} a_{\pi(1)1} a_{\pi(2)2} \cdots a_{\pi(n)n}$$

Every row determines a *word* $a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Definition

The set of row-words is noted L.

Definition (Brlek et al. (2004))

The permanent of a tableau T is the set of words

$$Perm(T) = \bigcup_{\pi \in S_n} a_{\pi(1)1} a_{\pi(2)2} \cdots a_{\pi(n)n}$$

Definition (Brlek et al. (2004))

A tableau T is Cantorian if no row-words appear in Perm(T), i.e.

$$L \cap Perm(T) = \emptyset$$
.

Theorem (Brlek et al. (2004))

The diagonal $a_{11}a_{22}a_{33}a_{44}\cdots$ is transcendental.

Theorem (Brlek et al. (2004))

The diagonal $a_{\sigma(1)1}a_{\sigma(2)2}a_{\sigma(3)3}a_{\sigma(4)4}\cdots$ is transcendental, where $\sigma \in S_{\infty}$.

Theorem (Brlek et al. (2004))

The diagonal $a_{\sigma(1)1}a_{\sigma(2)2}a_{\sigma(3)3}a_{\sigma(4)4}\cdots$ is transcendental, where $\sigma \in S_{\infty}$.

Theorem (Brlek et al. (2004))

Let $\mathbb{Q} \subseteq L$ be a countable set in [0,1] and T the tableau obtained by the development of the elements in L in base $s \geq 2$. The tableau T is Cantorian. Meaning :

$$Perm(T) \subseteq [0,1] \setminus L$$
.

Theorem (Brlek et al. (2004))

Let $\mathbb{Q} \subseteq L$ be a countable set in [0,1] and T the tableau obtained by the development of the elements in L in base $s \geq 2$. The tableau T is Cantorian. Meaning :

$$Perm(T) \subseteq [0,1] \setminus L$$
.

Theorem (Brlek et al. (2004))

Let $\mathbb{Q} \subseteq L$ be a countable set in [0,1] and T the tableau obtained by the development of the elements in L in base $s \geq 2$. The tableau T is Cantorian. Meaning :

$$Perm(T) \subseteq [0,1] \setminus L$$
.

Theorem (Brlek et al. (2004))

If s = 2, then we have

$$Perm(T) = [0,1] \setminus L.$$

So, if L contains all algebraic numbers of [0,1], Perm(T) is exactly the set of all transcendental numbers in [0,1].

We note the set of $n \times n$ tableaux over the alphabet A containing s letters by \mathcal{T}_n^s .

We note the set of $n \times n$ tableaux over the alphabet A containing s letters by \mathcal{T}_n^s .

A few examples :

We note the set of $n \times n$ tableaux over the alphabet A containing s letters by \mathcal{T}_n^s .

A few examples:

$$\left(\begin{array}{ccccccc} a & b \\ b & a \end{array}\right), \left(\begin{array}{ccccccc} a & a & b & a & a & b \\ b & b & a & b & b & a \\ a & b & a & b & a & b \\ b & a & b & a & b & a \\ b & b & b & a & b & b \\ a & a & a & b & a & a \end{array}\right), \left(\begin{array}{cccccc} a & b & a \\ b & a & b \\ b & b & b \end{array}\right)$$

We note the set of $n \times n$ tableaux over the alphabet A containing s letters by \mathcal{T}_n^s .

A few examples:

The third tableau is not Cantorian.

We note the set of $n \times n$ tableaux over the alphabet A containing s letters by \mathcal{T}_n^s .

A few examples:

The third tableau is not Cantorian.

Proposition (Brlek et al. (2004))

Proposition (Brlek et al. (2004))

Proposition (Brlek et al. (2004))

```
      a
      a
      b
      a
      a
      b

      b
      b
      a
      b
      a
      b

      a
      b
      a
      b
      a
      b

      b
      a
      b
      a
      b
      b

      a
      a
      a
      b
      a
      a
```


Proposition (Brlek et al. (2004))

```
      (a)
      a
      b
      a
      a
      b
      b
      a
      b
      a
      b
      a
      b
      a
      b
      a
      b
      a
      b
      a
      b
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
      a
```


Proposition (Brlek et al. (2004))

Proposition (Brlek et al. (2004))

$$\begin{pmatrix} a & a & b & a & a & b \\ b & b & a & b & b & a \\ a & b & a & b & a & b \\ b & a & b & a & b & a \\ b & b & b & a & b & b \\ a & a & a & b & a & a \end{pmatrix} \Rightarrow \text{The tableau is Cantorian}$$

Remark (Brlek et al. (2004))

- by permuting rows;
- by permuting columns;
- given a bijection of the alphabet, remplacing the elements of a column by their image under this bijection.

Remark (Brlek et al. (2004))

- by permuting rows;
- by permuting columns;
- given a bijection of the alphabet, remplacing the elements of a column by their image under this bijection.

$$\begin{pmatrix}
a & a & b & b & c \\
a & a & b & b & c \\
a & a & b & b & c \\
b & b & a & a & d \\
b & b & a & a & d
\end{pmatrix}, \begin{pmatrix}
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a \\
b & b & b & b & b \\
b & b & b & b & b
\end{pmatrix}$$

Remark (Brlek et al. (2004))

- by permuting rows;
- by permuting columns;
- given a bijection of the alphabet, remplacing the elements of a column by their image under this bijection.

$$a \leftrightarrow a, b \leftrightarrow b, c \leftrightarrow c, d \leftrightarrow d$$

Remark (Brlek et al. (2004))

- by permuting rows;
- by permuting columns;
- given a bijection of the alphabet, remplacing the elements of a column by their image under this bijection.

$$a \leftrightarrow a, b \leftrightarrow b, c \leftrightarrow c, d \leftrightarrow d$$

Remark (Brlek et al. (2004))

- by permuting rows;
- by permuting columns;
- given a bijection of the alphabet, remplacing the elements of a column by their image under this bijection.

$$a \leftrightarrow b, b \leftrightarrow a, c \leftrightarrow c, d \leftrightarrow d$$

Remark (Brlek et al. (2004))

The property of being « Cantorian » is invariant :

- by permuting rows;
- by permuting columns;
- given a bijection of the alphabet, remplacing the elements of a column by their image under this bijection.

$$\begin{pmatrix}
a & a & b & b & c \\
a & a & b & b & c \\
a & a & b & b & c \\
b & b & a & a & d \\
b & b & a & a & d
\end{pmatrix}, \begin{pmatrix}
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a \\
b & b & b & b & b \\
b & b & b & b & b
\end{pmatrix}$$

 $a \leftrightarrow b, b \leftrightarrow a, c \leftrightarrow c, d \leftrightarrow d$

Remark (Brlek et al. (2004))

- by permuting rows;
- by permuting columns;
- given a bijection of the alphabet, remplacing the elements of a column by their image under this bijection.

$$\begin{pmatrix}
a & a & b & b & c \\
a & a & b & b & c \\
a & a & b & b & c \\
b & b & a & a & d \\
b & b & a & a & d
\end{pmatrix}, \begin{pmatrix}
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a \\
b & b & b & b & b \\
b & b & b & b & b
\end{pmatrix}$$

$$a \leftrightarrow c, b \leftrightarrow d, c \leftrightarrow a, d \leftrightarrow b$$

Definition

Let $T', T \in \mathcal{T}_n^s$. We write

 $T' \sim T \iff T'$ can be obtain from T by a finite sequence of invariant transformations.

We will say that T' is equivalent to T.

Parikh composition

Let $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ and $\mathbb{N}^{\star} = \{\text{finite words in } \mathbb{N}\}.$

Parikh composition

Let $\mathbb{N} = \{0, 1, 2, 3, \ldots\}$ and $\mathbb{N}^* = \{\text{finite words in } \mathbb{N}\}.$ An element $\lambda \in \mathbb{N}^*$ is called *composition*.

Let $\mathbb{N}=\{0,1,2,3,\ldots\}$ and $\mathbb{N}^{\star}=\{\text{finite words in }\mathbb{N}\}.$ An element $\lambda\in\mathbb{N}^{\star}$ is called *composition*.

Definition

Let $w \in A^*$ be a word of length n. The Parikh composition $\mathfrak{p}_w := \mathfrak{p}(w)$ of w is a composition of weight n and of length s obtain by the function

$$\mathfrak{p}: A^{\star} \to \mathbb{N}^{\star}$$

$$w \mapsto |w|_{\alpha_1} |w|_{\alpha_2} \cdots |w|_{\alpha_{\epsilon}}.$$

Let $\mathbb{N}=\{0,1,2,3,\ldots\}$ and $\mathbb{N}^{\star}=\{\text{finite words in }\mathbb{N}\}.$ An element $\lambda\in\mathbb{N}^{\star}$ is called *composition*.

Definition

Let $w \in A^*$ be a word of length n. The Parikh composition $\mathfrak{p}_w := \mathfrak{p}(w)$ of w is a composition of weight n and of length s obtain by the function

$$\mathfrak{p}: A^{\star} \to \mathbb{N}^{\star}$$

$$w \mapsto |w|_{\alpha_1} |w|_{\alpha_2} \cdots |w|_{\alpha_s}.$$

We extend the function \mathfrak{p} to tableaux \mathcal{T}_n^s , $\mathfrak{P}:\mathcal{T}_n^s\to (\mathbb{N}^\star)^n$.

We extend the function $\mathfrak p$ to tableaux $\mathcal T_n^s$, $\mathfrak P:\mathcal T_n^s\to (\mathbb N^\star)^n$.

Definition

The Parikh compositions $(\mathfrak{p}_{c_1},\mathfrak{p}_{c_2},\ldots,\mathfrak{p}_{c_n})$ of a tableau T is the n-sequence of Parikh compositions of its column-words.

We extend the function $\mathfrak p$ to tableaux $\mathcal T_n^s$, $\mathfrak P:\mathcal T_n^s o (\mathbb N^\star)^n$.

Definition

The Parikh compositions $(\mathfrak{p}_{c_1},\mathfrak{p}_{c_2},\ldots,\mathfrak{p}_{c_n})$ of a tableau T is the n-sequence of Parikh compositions of its column-words.

$$\left(\begin{array}{rrr}
1 & 1 & 3 \\
1 & 1 & 2 \\
2 & 3 & 1
\end{array}\right)$$

(210, 201, 111)

We extend the function $\mathfrak p$ to tableaux $\mathcal T_n^s$, $\mathfrak P:\mathcal T_n^s\to (\mathbb N^\star)^n$.

Definition

The Parikh compositions $(\mathfrak{p}_{c_1},\mathfrak{p}_{c_2},\ldots,\mathfrak{p}_{c_n})$ of a tableau T is the n-sequence of Parikh compositions of its column-words.

$$\begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 & 3 & 3 \\ 3 & 1 & 2 & 1 & 1 & 2 \\ 2 & 3 & 2 & 1 & 1 & 1 \\ 3 & 3 & 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 3 & 2 \end{pmatrix}$$

(210, 201, 111) (222, 312, 231, 510, 222, 231)

We extend the function $\mathfrak p$ to tableaux $\mathcal T_n^s$, $\mathfrak P:\mathcal T_n^s \to (\mathbb N^\star)^n$.

Definition

The Parikh compositions $(\mathfrak{p}_{c_1}, \mathfrak{p}_{c_2}, \dots, \mathfrak{p}_{c_n})$ of a tableau T is the n-sequence of Parikh compositions of its column-words.

$$\begin{pmatrix} 1 & 1 & 3 \\ 1 & 1 & 2 \\ 2 & 3 & 1 \end{pmatrix} \qquad \begin{pmatrix} 1 & 2 & 3 & 1 & 2 & 2 \\ 2 & 1 & 1 & 2 & 3 & 3 \\ 3 & 1 & 2 & 1 & 1 & 2 \\ 2 & 3 & 2 & 1 & 1 & 1 \\ 3 & 3 & 2 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 3 & 2 \end{pmatrix} \qquad \begin{pmatrix} 2 & 1 & 1 & 2 \\ 3 & 1 & 2 & 1 \\ 2 & 1 & 1 & 1 \\ 2 & 1 & 2 & 1 \end{pmatrix}$$

(210, 201, 111) (222, 312, 231, 510, 222, 231) (031, 400, 220, 310)

Representatives

00000

Cantor's diagonal argument

Orders on \mathbb{N}^* and A^*

Definition

Let $\lambda, \lambda' \in \mathbb{N}^*$. We write $\lambda \leq \lambda'$ if and only if

$$\ell(\lambda) < \ell(\lambda')$$
 or $(\ell(\lambda) = \ell(\lambda') \text{ and } \lambda' \leq \lambda)$.

Orders on \mathbb{N}^* and A^*

Definition

Let $\lambda, \lambda' \in \mathbb{N}^*$. We write $\lambda \leq \lambda'$ if and only if

$$\ell(\lambda) < \ell(\lambda')$$
 or $(\ell(\lambda) = \ell(\lambda') \text{ and } \lambda' \leq \lambda)$.

$$5 \preceq 41 \preceq 32 \preceq 23 \preceq 14 \preceq 311 \preceq 221 \preceq 212 \preceq 131 \preceq 122 \preceq 113$$

Orders on \mathbb{N}^* and A^*

Definition

Let $\lambda, \lambda' \in \mathbb{N}^*$. We write $\lambda \leq \lambda'$ if and only if

$$\ell(\lambda) < \ell(\lambda')$$
 or $(\ell(\lambda) = \ell(\lambda'))$ and $\lambda' \leq \lambda$.

$$5 \preceq 41 \preceq 32 \preceq 23 \preceq 14 \preceq 311 \preceq 221 \preceq 212 \preceq 131 \preceq 122 \preceq 113$$

Finally, we define a total order \triangleleft on A^* , which we call *Parikh* composition order on A^* .

Definition

Let $w, w' \in A^*$. We write $w \triangleleft w'$ if and only if

$$\mathfrak{p}_w \prec \mathfrak{p}_{w'}$$
 or $(\mathfrak{p}_w = \mathfrak{p}_{w'} \text{ and } w \leq w')$.

Total order on tableaux

Definition

Let $T, T' \in \mathcal{T}_n^s$. We extend naturally the order on tableaux

$$T \blacktriangleleft T' \iff c_1 \blacktriangleleft c_1'$$
or $(c_1 = c_1', \text{ and } c_2 \blacktriangleleft c_2')$
etc.

where c_i is the i-th column-word of T and similarly for c'_i with T'.

Total order on tableaux

Definition

Let $T, T' \in \mathcal{T}_n^s$. We extend naturally the order on tableaux

$$T \blacktriangleleft T' \iff c_1 \blacktriangleleft c_1'$$
or $(c_1 = c_1', \text{ and } c_2 \blacktriangleleft c_2')$
etc.

where c_i is the i-th column-word of T and similarly for c'_i with T'.

Example

$$\begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 2 \end{bmatrix} \blacktriangleleft \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 2 & 3 \end{bmatrix} \blacktriangleleft \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 3 \\ 1 & 1 & 1 \end{bmatrix} \blacktriangleleft \begin{bmatrix} 1 & 1 & 1 \\ 1 & 3 & 2 \\ 1 & 1 & 1 \end{bmatrix} \blacktriangleleft \begin{bmatrix} 2 & 3 & 1 \\ 2 & 2 & 2 \\ 2 & 3 & 1 \end{bmatrix}$$

Lemma

Let $T \in \mathcal{T}_n^s$. In the class [T], there exist a unique minimal representative T_{\blacktriangleleft} .

Definition

A tableau $T' \in [T]$ is reduced if its Parikh compositions are equal to the ones of T_{\blacktriangleleft} .

Remark

Remark

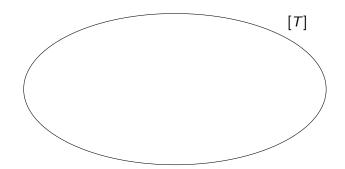
Remark

Remark

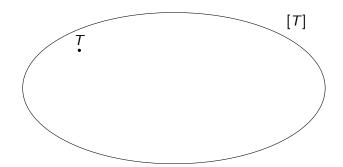
Remark

Problem

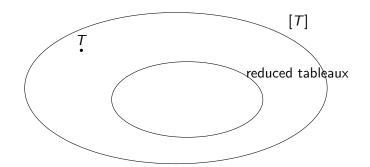
Problem



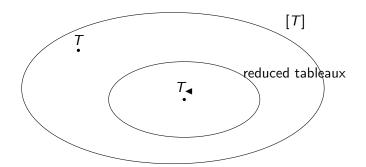
Problem



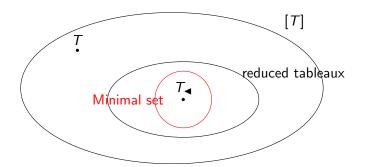
Problem



Problem



Problem



Number of Cantorian classes

Number of minimal representatives of dimension n over an alphabet of s letters (over the number of classes tested) :

n s	2	3	4	5	6
2	1/1	1/1	1/1	1/1	1/1
3	1/3	5/9	5/9	5/9	5/9
4	6/21	56/171	107/275	107/275	107/275
5	11/165	1873/12574			

A few minimal representatives

A few minimal representatives Dimension n = 2 with $s \ge 2$:

$$R_s = \begin{bmatrix} a & a \\ b & b \end{bmatrix}$$
$$|[R_s]| = s^2(s-1)^2$$

A few minimal representatives Dimension n = 2 with $s \ge 2$:

$$R_s = \begin{bmatrix} a & a \\ b & b \end{bmatrix}$$
$$|[R_s]| = s^2(s-1)^2$$

The sufficient condition applies.

A few minimal representatives Dimension n = 3, s = 2:

$$R = \begin{bmatrix} a & a & a \\ a & a & a \\ b & b & b \end{bmatrix}$$
$$|[R]| = 24$$

A few minimal representatives Dimension n = 3, s = 2:

$$R = \begin{bmatrix} a & a & a \\ a & a & a \\ b & b & b \end{bmatrix}$$
$$[R]| = 24$$

The sufficient condition applies.

A few minimal representatives

Dimension n = 3, s = 3:

$$\begin{bmatrix} a & a & a \\ a & a & a \\ b & b & b \end{bmatrix} \qquad \begin{bmatrix} a & a & a \\ a & a & b \\ b & b & c \end{bmatrix} \qquad \begin{bmatrix} a & a & a \\ a & b & b \\ b & c & c \end{bmatrix}$$
$$|[R_1]| = 648 \qquad |[R_2]| = 1944 \qquad |[R_3]| = 1944$$
$$\begin{bmatrix} a & a & a \\ a & b & b \\ a & c & c \end{bmatrix} \qquad \begin{bmatrix} a & a & a \\ b & b & b \\ c & c & c \end{bmatrix}$$
$$|[R_4]| = 324 \qquad |[R_5]| = 216$$

A few minimal representatives

Dimension n = 3, s = 3:

$$\begin{bmatrix} a & a & a \\ a & a & a \\ b & b & b \end{bmatrix} \qquad \begin{bmatrix} a & a & a \\ a & a & b \\ b & b & c \end{bmatrix} \qquad \begin{bmatrix} a & a & a \\ a & b & b \\ b & c & c \end{bmatrix}$$
$$|[R_1]| = 648 \qquad |[R_2]| = 1944 \qquad |[R_3]| = 1944$$
$$\begin{bmatrix} a & a & a \\ a & b & b \\ a & c & c \end{bmatrix} \qquad \begin{bmatrix} a & a & a \\ b & b & b \\ c & c & c \end{bmatrix}$$
$$|[R_4]| = 324 \qquad |[R_5]| = 216$$

The sufficient condition does not applies!

Cantorian classes cardinality

Cantorian classes cardinality

Theorem

Let $T \in \mathcal{T}_n^s$. We note the multiplicities of row-words of T by (f_1, f_2, \ldots, f_q) , where q = |L|. Similarly, (g_1, g_2, \ldots, g_r) denote the multiplicities of column-words of T, where r = |C|.

Cantorian classes cardinality

Theorem

Let $T \in \mathcal{T}_n^s$. We note the multiplicities of row-words of T by (f_1, f_2, \ldots, f_q) , where q = |L|. Similarly, (g_1, g_2, \ldots, g_r) denote the multiplicities of column-words of T, where r = |C|. The cardinality of [T] is

$$\frac{\frac{(n!)^2}{\left(\prod_{i=1}^r g_j! \prod_{i=1}^q f_i! + \eta\right)} \cdot \prod_{i=1}^n \frac{s!}{\left(s - \ell^+(\mathfrak{p}_{c_i})\right)!}}{\vartheta},$$

where
$$\vartheta = |\mathcal{O}_{\mathcal{B}}(T) \cap \mathcal{O}_{\Phi}(T)|$$
 and $\eta = |\{(\sigma, \tau) \in \mathcal{S}_n \times \mathcal{S}_n \mid \sigma T \tau = T \text{ and } \sigma T \neq T\}|.$

bi-Cantorian

Example - Class cardinality

$$R_4 = \begin{bmatrix} a & a & a \\ a & b & b \\ a & c & c \end{bmatrix}$$
$$|[R_4]| = 324$$

Example - Class cardinality

$$R_4 = \begin{bmatrix} a & a & a \\ a & b & b \\ a & c & c \end{bmatrix}$$
$$|[R_4]| = 324$$

$$(f_1, f_2, f_3) = (1, 1, 1)$$

 $(g_1, g_2) = (2, 1)$
 $\ell^+(\mathfrak{p}_{c_1}) = \ell^+(300) = 1$

Example - Class cardinality

$$R_4 = \begin{bmatrix} a & a & a \\ a & b & b \\ a & c & c \end{bmatrix}$$
$$|[R_4]| = 324$$

$$(f_1, f_2, f_3) = (1, 1, 1)$$

 $(g_1, g_2) = (2, 1)$
 $\ell^+(\mathfrak{p}_{c_1}) = \ell^+(300) = 1$

$$\ell^+(\mathfrak{p}_{c_2})=\ell^+(\mathfrak{p}_{c_3})=\ell^+(111)=3$$
 By computations, $\eta=0,\vartheta=6$

Example - Class cardinality

Cantor's diagonal argument

$$R_4 = \begin{bmatrix} a & a & a \\ a & b & b \\ a & c & c \end{bmatrix}$$
$$|[R_4]| = 324$$

$$\begin{array}{ll} (f_1,f_2,f_3)=(1,1,1) & \ell^+(\mathfrak{p}_{c_2})=\ell^+(\mathfrak{p}_{c_3})=\ell^+(111)=3 \\ (g_1,g_2)=(2,1) & \text{By computations, } \eta=0,\vartheta=6 \\ \ell^+(\mathfrak{p}_{c_1})=\ell^+(300)=1 & \end{array}$$

$$|[R_4]| = \frac{\frac{(3!)^2}{((2!1!)\cdot(1!1!1!)+0)} \cdot \frac{3!}{(3-1)!} \frac{3!}{(3-3)!} \frac{3!}{(3-3)!}}{6} = 324$$

New enumerative results

Number of Cantorian tableaux of dimension n over an alphabet of s letters :

$n \setminus s$	2	3	4	5
2	1.2^{2}	$2^2 \cdot 3^2$	$3^2 \cdot 4^2$	$4^2 \cdot 5^2$
3	$3 \cdot 2^3$	$47\cdot 2^2\cdot 3^3$	$207\cdot 3^2\cdot 4^3$	$579\cdot 4^2\cdot 5^3$
4	$109 \cdot 2^4$	$25036 \cdot 2^2 \cdot 3^4$	$803613 \cdot 3^2 \cdot 4^4$	$9419224 \cdot 4^2 \cdot 5^4$
5	$2765\cdot 2^5$	$16304200 \cdot 2^2 \cdot 3^5$		
:	:			

New enumerative results

Number of Cantorian tableaux of dimension n over an alphabet of s letters :

n∖s	2	3	4	5
2	1.2^{2}	$2^2 \cdot 3^2$	$3^2 \cdot 4^2$	$4^2 \cdot 5^2$
3	$3 \cdot 2^3$	$47\cdot 2^2\cdot 3^3$	$207\cdot 3^2\cdot 4^3$	$579\cdot 4^2\cdot 5^3$
4	$109 \cdot 2^4$	$25036 \cdot 2^2 \cdot 3^4$	$803613 \cdot 3^2 \cdot 4^4$	$9419224 \cdot 4^2 \cdot 5^4$
5	$2765\cdot 2^5$	$16304200 \cdot 2^2 \cdot 3^5$		
:	:			

	Before	After
C(4,2)	3 min.	9 sec.
C(4,3)	$\geq 17 h$	105 sec.
C(4,4)	≥ 74d	25 sec.

Computed using Sage4.5.2 on a Intel 2.8Ghz machine

New enumerative results

Theorem

The number of Cantorian tableaux C(n,s) for n=2,3 and 4 is given by the following polynomials

$$C(2,s) = s^{2} \cdot (s-1)^{2};$$

$$C(3,s) = s^{3} \cdot (s-1)^{2} \cdot (s^{4} + 2s^{3} - 15s^{2} + 16s - 1);$$

$$C(4,s) = s^{4} \cdot (s-1)^{2} \cdot (s^{10} + 2s^{9} + 3s^{8} - 92s^{7} - 43s^{6} + 1014s^{5} -449s^{4} - 5680s^{3} + 12045s^{2} - 9406s + 2629).$$

Definition

Definition (Brlek et al. (2004))

A tableau T is bi-Cantorian if no row-words or column-words appear in Perm(T), i.e.

$$(C \cup L) \cap Perm(T) = \emptyset.$$

Definition

Definition (Brlek et al. (2004))

A tableau T is bi-Cantorian if no row-words or column-words appear in Perm(T), i.e.

$$(C \cup L) \cap Perm(T) = \emptyset.$$

Fact

The property of being \ll bi-Cantorian \gg is not invariant under \sim anymore ! \circledcirc

Brute force enumerative results

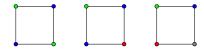
$n \setminus s$	2	3	4	5	6	
2	$1 \cdot 2 \cdot 1$	2 · 3 · 3	3 · 4 · 7	4 · 5 · 13	5 · 6 · 21	
3	1 · 2 · 3	2 · 3 · 367	3 · 4 · 6179	4 · 5 · 43065		
4	1 · 2 · 91	2 · 3 · 402873				
- 5	1 · 2 · 2005					
6						

TABLE: Number of bi-Cantorian tableaux of dimension n over an alphabet of s letters

Let K(s) be the number of colorings of the 4-cycle such that every edge is not monochromatic.

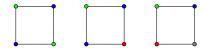
Let K(s) be the number of colorings of the 4-cycle such that every edge is not monochromatic.

There are three types of coloring:



Let K(s) be the number of colorings of the 4-cycle such that every edge is not monochromatic.

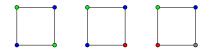
Let B(s) be the number of bi-Cantorian tableaux of dimension 2. There are three types of coloring :



Let K(s) be the number of colorings of the 4-cycle such that every edge is not monochromatic.

Let B(s) be the number of bi-Cantorian tableaux of dimension 2.

There are three types of coloring:



Proposition

The number of bi-Cantorian tableaux B(s) is equalt to the number of coloring K(s). In particular,

$$K(s) = B(s) = s(s-1)(s^2-3s+3) = 2\binom{s}{2} + 12\binom{s}{3} + 24\binom{s}{4}$$
.

Let K(s) be the number of colorings of the 4-cycle such that every edge is not monochromatic.

Let B(s) be the number of bi-Cantorian tableaux of dimension 2.

There are three types of coloring:

Proposition

The number of bi-Cantorian tableaux B(s) is equalt to the number of coloring K(s). In particular,

$$K(s) = B(s) = s(s-1)(s^2-3s+3) = 2\binom{s}{2} + 12\binom{s}{3} + 24\binom{s}{4}$$
.

Open problems - bi-Cantorian tableaux

Problem

Consider an infinite tableau T^{∞} formed by developing in base s algebraic numbers of [0,1]. Are there algebraic columns? If so, how many?

Open problems - bi-Cantorian tableaux

Problem

Consider an infinite tableau T^{∞} formed by developing in base s algebraic numbers of [0,1]. Are there algebraic columns? If so, how many?

Problem

Find, if it exists, $\lim_{n\to\infty} \frac{\log B(n,s)}{\log s^{n^2}}$.

Open problems - bi-Cantorian tableaux

Problem

Consider an infinite tableau T^{∞} formed by developing in base s algebraic numbers of [0,1]. Are there algebraic columns? If so, how many?

Problem

Find, if it exists, $\lim_{n\to\infty} \frac{\log B(n,s)}{\log s^{n^2}}$.

Problem

Find $\lim_{n\to\infty} \frac{B(n,s)}{C(n,s)}$. (For s=2, the first values are : 0.5, 0.25, 0.104, 0.045)

Merci! Thank you! Grazie! Danke! Gracias! I am founded by :

