Tableaux Cantoriens et bi-Cantoriens CIRM

Jean-Philippe Labbé

UQAM LaCIM

12 mai 2010

Si on écrit le développement en base s > 1 des nombres algébriques de l'intervalle (0,1) dans un tableau T:

Si on écrit le développement en base s>1 des nombres algébriques de l'intervalle (0,1) dans un tableau \mathcal{T} :

S	s^{-1}	s^{-2}	s^{-3}	s^{-4}	s^{-5}	
0	a ₁₁	a ₁₂ a ₂₂ a ₃₂ a ₄₂ a ₅₂	a ₁₃	a ₁₄	a ₁₅	• • •
0	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	• • •
0	a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅	• • •
0	a ₄₁	a ₄₂	a 43	<i>a</i> 44	<i>a</i> 45	• • •
0	a ₅₁	<i>a</i> ₅₂	a ₅₃	<i>a</i> 54	a ₅₅	• • •
		:			•	٠

Si on écrit le développement en base s>1 des nombres algébriques de l'intervalle (0,1) dans un tableau \mathcal{T} :

				s^{-4}		
0	a ₁₁	a ₁₂	a ₁₃	a ₁₄ a ₂₄ a ₃₄ a ₄₄ a ₅₄	a ₁₅	• • •
0	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	
0	a ₃₁	a ₃₂	a ₃₃	a ₃₄	a ₃₅	• • •
0	a ₄₁	a ₄₂	a 43	<i>a</i> 44	<i>a</i> 45	• • •
0	a ₅₁	<i>a</i> ₅₂	<i>a</i> 53	<i>a</i> 54	<i>a</i> 55	• • •
		:			:	٠

Si on écrit le développement en base s>1 des nombres algébriques de l'intervalle (0,1) dans un tableau $\mathcal T$:

s	$ s^{-1} $	s^{-2}	s^{-3}	s^{-4}	s^{-5}	
0	a ₁₁	a ₁₂	a ₁₃	a ₁₄	a ₁₅	• • •
0	a ₂₁	a ₂₂	a ₂₃	a ₂₄	a ₂₅	• • •
0	a ₃₁	a ₂₂ a ₃₂ a ₄₂	a ₃₃	a ₃₄	a ₃₅	• • •
0	a ₄₁	a ₄₂	a 43	<i>a</i> 44	<i>a</i> 45	
	a ₅₁	a ₅₂	a ₅₃	<i>a</i> 54	<i>a</i> 55	• • •
:	:	:	:	:	:	٠

On crée le nombre $b = b_1b_2b_3b_4b_5\cdots$ où $b_i \neq a_{ii}$

Chaque ligne du tableau détermine un $mot a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Définition

L'ensemble des mots formés par les lignes est noté L.

Chaque ligne du tableau détermine un mot $a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Définition

L'ensemble des mots formés par les lignes est noté L.

Le permanent d'une matrice $n \times n$ définie sur un anneau est :

$$\sum_{\pi\in S_n}a_{\pi(1)1}a_{\pi(2)2}\cdots a_{\pi(n)n}.$$

Chaque ligne du tableau détermine un mot $a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Définition

L'ensemble des mots formés par les lignes est noté L.

Le permanent d'une matrice $n \times n$ définie sur un anneau est :

$$\sum_{\pi\in S_n}a_{\pi(1)1}a_{\pi(2)2}\cdots a_{\pi(n)n}.$$

Naturellement, on définit le permanent d'un tableau T

<u>Dé</u>finition

Le permanent d'un tableau T est l'ensemble des mots

$$Perm(T) = \bigcup_{\pi \in S_n} a_{\pi(1)1} a_{\pi(2)2} \cdots a_{\pi(n)n}$$

Chaque ligne du tableau détermine un mot $a_{i1}a_{i2}a_{i3}a_{i4}\cdots$

Définition

L'ensemble des mots formés par les lignes est noté L.

Définition

Le permanent d'un tableau T est l'ensemble des mots

$$Perm(T) = \bigcup_{\pi \in S_n} a_{\pi(1)1} a_{\pi(2)2} \cdots a_{\pi(n)n}$$

Définition

Un tableau T est Cantorien si aucun mot formé par les lignes n'apparaît dans Perm(T). Donc,

$$L \cap Perm(T) = \emptyset$$
.

Fait

La diagonale $a_{11}a_{22}a_{33}a_{44}\cdots$ est un nombre transcendant.

Fait

La diagonale $a_{11}a_{22}a_{33}a_{44}\cdots$ est un nombre transcendant.

Fait

La diagonale $a_{\sigma(1)1}a_{\sigma(2)2}a_{\sigma(3)3}a_{\sigma(4)4}\cdots$ est un nombre transcendant, où $\sigma \in S_{\infty}$.

Fait

La diagonale $a_{11}a_{22}a_{33}a_{44}\cdots$ est un nombre transcendant.

Fait

La diagonale $a_{\sigma(1)1}a_{\sigma(2)2}a_{\sigma(3)3}a_{\sigma(4)4}\cdots$ est un nombre transcendant, où $\sigma \in S_{\infty}$.

Fait

Soit L un ensemble dénombrable de [0,1] et T le tableau formé par les développements des éléments de L en base $s \geq 2$. Alors T est Cantorien. C'est-à-dire :

$$Perm(T) \subseteq [0,1] \setminus L$$
.

Fait

Soit L un ensemble dénombrable de [0,1] et T le tableau formé par les développements des éléments de L en base $s \geq 2$. Alors T est Cantorien. C'est-à-dire :

$$Perm(T) \subseteq [0,1] \setminus L$$
.

Fait

Si s = 2, alors nous avons

$$Perm(T) = [0,1] \setminus L$$
.

Donc, si L contient tous les nombres algébriques de [0,1], alors Perm(T) est exactement l'ensemble de tous les nombres transcendants de [0,1].

Pour la suite, nous considérons les tableaux finis $n \times n$. Soit A un alphabet de s lettres.

Pour la suite, nous considérons les tableaux finis $n \times n$. Soit A un alphabet de s lettres.

Voici quelques exemples de tableaux :

Pour la suite, nous considérons les tableaux finis $n \times n$. Soit A un alphabet de s lettres.

Voici quelques exemples de tableaux :

Pour la suite, nous considérons les tableaux finis $n \times n$. Soit A un alphabet de s lettres.

Voici quelques exemples de tableaux :

$$\left(\begin{array}{ccccccc} a & b \\ b & a \end{array}\right), \left(\begin{array}{ccccccc} a & a & b & a & a & b \\ b & b & a & b & b & a \\ a & b & a & b & a & b \\ b & a & b & a & b & a \\ b & b & b & a & b & b \\ a & a & a & b & a & a \end{array}\right), \left(\begin{array}{cccccc} a & b & a \\ b & a & b \\ b & b & b \end{array}\right)$$

Le troisième n'est pas Cantorien.

Pour la suite, nous considérons les tableaux finis $n \times n$. Soit A un alphabet de s lettres.

Voici quelques exemples de tableaux :

$$\left(\begin{array}{ccccccc} a & b \\ b & a \end{array}\right), \left(\begin{array}{ccccccc} a & a & b & a & a & b \\ b & b & a & b & b & a \\ a & b & a & b & a & b \\ b & a & b & a & b & a \\ b & b & b & a & b & b \\ a & a & a & b & a & a \end{array}\right), \left(\begin{array}{cccccc} a & b & a \\ b & a & b \\ b & b & b \end{array}\right)$$

Le troisième n'est pas Cantorien.

Fait

Fait

Fait

Fait

Fait

Relation d'équivalence sur les tableaux

Fait

La propriété « être Cantorien » est invariant :

- par permutation de lignes;
- par permutation de colonnes;
- étant donnée une bijection de l'alphabet, remplacer les éléments d'une colonne par leurs images via la bijection.

Relation d'équivalence sur les tableaux

Fait

La propriété « être Cantorien » est invariant :

- par permutation de lignes;
- par permutation de colonnes;
- étant donnée une bijection de l'alphabet, remplacer les éléments d'une colonne par leurs images via la bijection.

$$\begin{pmatrix}
a & a & b & b & c \\
a & a & b & b & c \\
a & a & b & b & c \\
b & b & a & a & d \\
b & b & a & a & d
\end{pmatrix}, \begin{pmatrix}
a & a & a & a & a \\
a & a & a & a & a \\
a & a & a & a & a \\
b & b & b & b & b \\
b & b & b & b & b
\end{pmatrix}$$

Définition

Soit T' et T deux tableaux $n \times n$. Alors on note

 $T' \sim T \iff T'$ peut être obtenu à partir de T par une suite finie de transformation invariantes

On dira alors que T' est équivalent à T.

Ordre total sur les tableaux

Un tableau est une suite de n mots de longueur n de l'alphabet A.

Ordre total sur les tableaux

Un tableau est une suite de n mots de longueur n de l'alphabet A.

Définition

Soient T et T' deux tableaux d'ordre n. On définit naturellement la relation

$$T' \preceq T \iff T'[1] \preceq_{lex} T[1]$$

 $si \ T'[1] =_{lex} T[1], alors \ T'[2] \preceq_{lex} T[2]$
 $etc.$

où \prec_{lex} est l'ordre lexicographique sur A.

Représentant minimal d'une classe

Fait

Soit T un tableau d'ordre n. Étant donné que les tableaux sont totalement ordonnés, il existe un représentant minimal T_{min} de T sous \equiv et \prec .

Représentant minimal d'une classe

Fait

Soit T un tableau d'ordre n. Étant donné que les tableaux sont totalement ordonnés, il existe un représentant minimal T_{min} de T sous \equiv et \prec .

Problème

Comment trouver « rapidement » T_{min} ? Comment trouver « rapidement » tous les T_{min} ? (Objet principal de la recherche)

Représentant minimal d'une classe

Fait

Soit T un tableau d'ordre n. Étant donné que les tableaux sont totalement ordonnés, il existe un représentant minimal T_{min} de T sous \equiv et \prec .

Problème

Comment trouver « rapidement » T_{min} ? Comment trouver « rapidement » tous les T_{min} ? (Objet principal de la recherche)

L'objectif est de trouver une condition nécessaire *et* suffisante pour qu'un tableau soit Cantorien.

Représentant minimaux Cantoriens

Nombre de tableaux Cantorien d'ordre n sur un alphabet à s lettres :

Représentant minimaux Cantoriens

Nombre de tableaux Cantorien d'ordre n sur un alphabet à s lettres :

$n \setminus s$	2	3	4	5	6
2	1.2^{2}	$4 \cdot 3^2$	$9 \cdot 4^2$	$16 \cdot 5^2$	$25 \cdot 6^2$
3	$3 \cdot 2^3$	$188 \cdot 3^3$	$1863 \cdot 4^{3}$	$9264 \cdot 5^{3}$	$32075 \cdot 6^3$
4	$109 \cdot 2^4$	$100144 \cdot 3^4$	*	-	-
5	$2765 \cdot 2^{5}$	*	*	*	-
:	:				
	2 3 4	$ \begin{array}{c cccc} 2 & 1 \cdot 2^2 \\ 3 & 3 \cdot 2^3 \\ 4 & 109 \cdot 2^4 \end{array} $	$\begin{array}{c ccccc} 2 & 1 \cdot 2^2 & 4 \cdot 3^2 \\ 3 & 3 \cdot 2^3 & 188 \cdot 3^3 \\ 4 & 109 \cdot 2^4 & 100144 \cdot 3^4 \end{array}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$

Nombre de représentants minimaux Cantoriens d'ordre n sur un alphabet à s lettres :

n s	2	3	4	5	6
2	1	1	1	1	1
3	1	5	5	5	5
4	6	*	*	-	-
5	*	*	*	*	-
:	:				

Nombre de représentants minimaux Cantoriens d'ordre n sur un alphabet à s lettres :

$n \backslash s$	2	3	4	5	6
2	1	1	1	1	1
3	1	5	5	5	5
4	6	*	*	-	-
5	*	*	*	*	-
:	:				

Suite : à l'aide des représentants, trouver une condition nécessaire et suffisante. Fera appel aux tableaux de Young ?

Nombre de représentants minimaux Cantoriens d'ordre n sur un alphabet à s lettres :

$n \backslash s$	2	3	4	5	6
2	1	1	1	1	1
3	1	5	5	5	5
4	6	*	*	-	-
5	*	*	*	*	-
:	:				

Suite : à l'aide des représentants, trouver une condition nécessaire et suffisante. Fera appel aux tableaux de Young ?

Nombre de représentants minimaux Cantoriens d'ordre n sur un alphabet à s lettres :

$n \setminus s$	2	3	4	5	6	
2	1	1	1	1	1	
3	1	5	5	5	5	
4	6	*	*	-	-	
5	*	*	*	*	-	
:	:					

Suite : à l'aide des représentants, trouver une condition nécessaire et suffisante. Fera appel aux tableaux de Young ?