Polyhedral Combinatorics of Coxeter Groups

Dissertation's Defense

Jean-Philippe Labbé

July 8th 2013

Open Problem (Dyer (1993))

Is there, for each infinite Coxeter group, a complete ortholattice that contains the weak order?

Open Problem (Jonsson (2003)) Is there a polytopal realization of the multi-associahedron?

Open Problem (Dyer (1993))

Is there, for each infinite Coxeter group, a complete ortholattice that contains the weak order?

 \rightsquigarrow Introduction of the limit roots of an infinite Coxeter group.

Open Problem (Jonsson (2003)) Is there a polytopal realization of the multi-associahedron?

 \sim Introduction of the multi-cluster complex of a finite Coxeter group.

The weak order on Coxeter groups

(W,S) – infinite Coxeter group $\left(\langle s,t\in S|e=s^2=(st)^{m_{s,t}}
ight)$

Definition (Weak order) Let $u, v \in W$. Then $u \leq v \iff u$ is a prefix of v.

Example tus and tustut. (W,S) – infinite Coxeter group $\left(\langle s,t\in S|e=s^2=(st)^{m_{s,t}}
ight)$

Definition (Weak order) Let $u, v \in W$. Then $u \leq v \iff u$ is a prefix of v.

Example

tus and tustut.

 (W, \leq) is a meet-semilattice. There is no maximal element. Question

How to tell when the join of two elements exists?

Asymptotical behaviour of roots

Study the directions of the roots.

The infinite dihedral group $I_2(\infty)$.

Limit roots of Coxeter groups

Limit roots of Coxeter groups

Theorem (Hohlweg-L.-Ripoll, Canad. J. Math. (2013)) The set $E(\Phi)$ of accumulation points of normalized roots $\widehat{\Phi}$ is contained in the isotropic cone of (V, B).

Theorem (L. 2012)

Let (W, S) be a Coxeter group of rank $n \le 3$, there is a complete ortholattice containing the weak order.

 \sim The join of two elements can be computed using convex hulls.

Theorem (L. 2012)

Let (W, S) be a Coxeter group of rank $n \le 3$, there is a complete ortholattice containing the weak order.

 \sim The join of two elements can be computed using convex hulls. Fact (L. 2012) For Coxeter groups of rank $n \ge 4$ the join can not be computed using convex hulls.

0

The notion of convexity is to restrictive. \sim biclosedness seems to be the right geometry to look at.

PART II: Subword Complexes in Discrete Geometry

triangulations

Finite Coxeter Groups (Algebraic)

Finite Coxeter Groups (Algebraic)

Finite Coxeter Groups (Algebraic)

Simplicial complex of multi-triangulations

Fix a convex *m*-gon.

Multi-triangulation: Maximal set of diagonals not containing k + 1 pairwise crossing diagonals.

Simplicial complex of multi-triangulations

Fix a convex *m*-gon.

Multi-triangulation: Maximal set of diagonals not containing k + 1 pairwise crossing diagonals.

 $\Delta_{m,k}$: the simplicial complex with

faces \longleftrightarrow sets of (relevant) diagonals not containing k+1 pairwise crossing diagonals

Simplicial complex of multi-triangulations

Fix a convex *m*-gon.

Multi-triangulation: Maximal set of diagonals not containing k + 1 pairwise crossing diagonals.

 $\Delta_{m,k}$: the simplicial complex with

faces \longleftrightarrow sets of (relevant) diagonals not containing k+1 pairwise crossing diagonals

Conjecture (Jonsson, 2003)

 $\Delta_{m,k}$ is isomorphic to the boundary complex of a simplicial polytope.

Simplicial complex $\Delta_{m,k}$ - Example

Let m = 6 and k = 2

When m = 2k + 2, $\Delta_{m,k}$ is a *k*-simplex.

Simplicial complex $\Delta_{m,k}$ - Example

Let m = 6 and k = 2

When m = 2k + 2, $\Delta_{m,k}$ is a *k*-simplex.

(W, S) finite Coxeter system of rank n

Definition (Knutson-Miller, 2004) Let $Q = (q_1, ..., q_r)$ be a word in S and $\pi \in W$. simplicial complex

subword complex $\Delta(Q, \pi)$:= facets \longleftrightarrow complements (in Q) of reduced expressions of π (W, S) finite Coxeter system of rank n

Definition (Knutson-Miller, 2004) Let $Q = (q_1, ..., q_r)$ be a word in S and $\pi \in W$. simplicial complex

subword complex $\Delta(Q, \pi)$:= facets \longleftrightarrow complements (in Q) of reduced expressions of π

Theorem (Knutson-Miller, 2004)

Subword complexes are topological spheres or balls.

Definition (Ceballos-L.-Stump, J. of Alg. Comb. 2013) The multi-cluster complex $\Delta_c^k(W)$ is the subword complex $\Delta(\mathbf{c}^k \mathbf{w}_{\circ}(\mathbf{c}), w_{\circ})$ of type W. Definition (Ceballos-L.-Stump, J. of Alg. Comb. 2013) The multi-cluster complex $\Delta_c^k(W)$ is the subword complex $\Delta(\mathbf{c}^k \mathbf{w}_{\circ}(\mathbf{c}), w_{\circ})$ of type W.

Theorem (CLS, 2013)

The subword complex $\Delta(\mathbf{cw}_{\circ}(\mathbf{c}), w_{\circ})$ is isomorphic to the *c*-cluster complex of type *W*.

Multi-cluster complexes of type A and B

Theorem (Pilaud-Pocchiola 2012, Stump 2011)

The multi-cluster simplicial complex complex $\Delta_c^k(A_n) \cong of k$ -triangulations of a convex m-gon

where m = n + 2k + 1.

Multi-cluster complexes of type A and B

Theorem (Pilaud-Pocchiola 2012, Stump 2011)

The multi-cluster simplicial complex complex $\Delta_c^k(A_n) \cong \text{of } k\text{-triangulations of } a$ convex m-gon

where m = n + 2k + 1.

Theorem (CLS, 2013)

The multi-cluster

simplicial complex of centrally complex $\Delta_c^k(B_{m-k}) \cong$ symmetric k-triangulations of a regular convex 2m-gon

Corollary

 $\Delta_{m,k}^{sym}$ is a vertex-decomposable simplicial sphere.

Universality and polytopality of $\Delta_c^k(W)$

Question (Knutson-Miller, 2004)

Charaterize all simplicial spheres that can be realized as a subword complex.

Universality and polytopality of $\Delta_c^k(W)$

Question (Knutson-Miller, 2004)

Charaterize all simplicial spheres that can be realized as a subword complex.

Theorem (CLS, 2013)

A simplicial sphere is realized as a subword complex

it is the link \iff of a face of a multi-cluster $complex \Delta_c^k(W).$

Universality and polytopality of $\Delta_c^k(W)$

Question (Knutson-Miller, 2004)

Charaterize all simplicial spheres that can be realized as a subword complex.

Theorem (CLS, 2013)

A simplicial sphereit is the linkis realized as \iff of a face of a multi-clustera subword complex $complex \Delta_c^k(W).$

Corollary

The following two statements are equivalent.

(i) Every spherical subword complex is polytopal.

(ii) Every multi-cluster complex is polytopal.

Polytopality of multi-cluster complexes

Conjecture (\Rightarrow Knutson-Miller'04, Jonsson'05, Soll-Welker'09) The multi-cluster complex is the boundary complex of a simplicial polytope. Conjecture (\Rightarrow Knutson-Miller'04, Jonsson'05, Soll-Welker'09) The multi-cluster complex is the boundary complex of a simplicial polytope.

- True for k = 1: Chapoton-Fomin-Zelevinsky, Hohlweg-Lange-Thomas, Pilaud-Stump, Stella
- ▶ True for $I_2(m)$, $k \ge 1$: cyclic polytope, Ceballos-L.-Stump
- ▶ True for A₃, k = 2: Bokowski-Pilaud, Ceballos-L.

Conjecture (\Rightarrow Knutson-Miller'04, Jonsson'05, Soll-Welker'09) The multi-cluster complex is the boundary complex of a simplicial polytope.

- True for k = 1: Chapoton-Fomin-Zelevinsky, Hohlweg-Lange-Thomas, Pilaud-Stump, Stella
- ▶ True for $I_2(m)$, $k \ge 1$: cyclic polytope, Ceballos-L.-Stump
- True for A_3 , k = 2: Bokowski-Pilaud, Ceballos-L.

Recent work of Bergeron-Ceballos-L.:

- New combinatorial construction giving 60000+ realizations of A₃, k = 2
- ► Fan realizations of all subword complexes of type A₃

Thanks!

Merci! Thank you! Grazie! Danke! Gracias!

Recent developments on limit roots

 \sim Relation with the Tits cone [Dyer-Hohlweg-Ripoll, (arxiv:2013)]

 \sim Limit set of Kleinian groups [Hohlweg-Préaux-Ripoll, (arxiv:2013)]

 \sim Sphere packings and geometric invariants for Coxeter groups [Chen-L., (in preparation)]

Recent developments on multi-cluster complexes

 \rightsquigarrow Generalized brick polytope, spanning trees [Pilaud-Stump, arxiv:2011-12]

 \sim Denominator vectors of cluster algebras of finite types [Ceballos-Pilaud, (arxiv:2013)]

 \sim Common vertices of permutahedra and generalized associahedra [L., 2013 and L.-Lange (in preparation)]

Geometric computation of the join

