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A few motivations

Open Problem (Dyer (1993))

Is there, for each infinite Coxeter group, a complete ortholattice
that contains the weak order?

; Introduction of the limit roots of an infinite Coxeter group.

Open Problem (Jonsson (2003))

Is there a polytopal realization of the multi-associahedron?

; Introduction of the multi-cluster complex of a finite Coxeter
group.
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PART I: Ortholattice for infinite Coxeter groups?
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The weak order on Coxeter groups

(W ,S) – infinite Coxeter group
(
〈s, t ∈ S |e = s2 = (st)ms,t 〉

)

Definition (Weak order)

Let u, v ∈W . Then u ≤ v ⇐⇒ u is a prefix of v .

Example

tus and tustut.

(W ,≤) is a meet-semilattice. There is no maximal element.

Question
How to tell when the join of two elements exists?
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Asymptotical behaviour of roots

Study the directions of the roots.

ρ′1
ρ1

ρ′2ρ2

ρ′3ρ3

ρ′4ρ4

Q

V1

V1Q̂

α = ρ′1β = ρ1 ρ̂′2ρ̂2 · · ·

The infinite dihedral group I2(∞).



Limit roots of Coxeter groups

sα sβ

sδ

sγ

sα sβ
∞

sδ
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sγ
∞ ∞

∞

Theorem (Hohlweg-L.-Ripoll, Canad. J. Math. (2013))

The set E (Φ) of accumulation points of normalized roots Φ̂ is
contained in the isotropic cone of (V ,B).
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A first step using biconvexity

Theorem (L. 2012)

Let (W , S) be a Coxeter group of rank n ≤ 3, there is a complete
ortholattice containing the weak order.

; The join of two elements can be computed using convex hulls.

Fact (L. 2012)

For Coxeter groups of rank n ≥ 4 the join can not be computed
using convex hulls.

The notion of convexity is to restrictive.
; biclosedness seems to be the right geometry to look at.
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PART II: Subword Complexes in Discrete Geometry
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Simplicial complex of multi-triangulations

Fix a convex m-gon.

Multi-triangulation: Maximal set of diagonals not containing k + 1
pairwise crossing diagonals.

∆m,k : the simplicial complex with

faces ←→ sets of (relevant) diagonals not containing
k + 1 pairwise crossing diagonals

Conjecture (Jonsson, 2003)

∆m,k is isomorphic to the boundary complex of a simplicial
polytope.
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Simplicial complex ∆m,k - Example

Let m = 6 and k = 2

When m = 2k + 2, ∆m,k is a k-simplex.
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Subword complexes

(W ,S) finite Coxeter system of rank n

Definition (Knutson-Miller, 2004)

Let Q = (q1, . . . , qr ) be a word in S and π ∈W .

simplicial complex
subword complex ∆(Q, π) := facets ←→ complements (in Q)

of reduced expressions of π

Theorem (Knutson-Miller, 2004)

Subword complexes are topological spheres or balls.
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Multi-cluster complex - Definition

Definition (Ceballos-L.-Stump, J. of Alg. Comb. 2013)

The multi-cluster complex ∆k
c (W ) is the subword complex

∆(ckw◦(c),w◦) of type W .

Theorem (CLS, 2013)

The subword complex ∆(cw◦(c),w◦) is isomorphic to the c-cluster
complex of type W .
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Multi-cluster complexes of type A and B

Theorem (Pilaud-Pocchiola 2012, Stump 2011)

The multi-cluster simplicial complex
complex ∆k

c (An) ∼= of k-triangulations of a
convex m-gon

where m = n + 2k + 1.

Theorem (CLS, 2013)

The multi-cluster simplicial complex of centrally
complex ∆k

c (Bm−k) ∼= symmetric k-triangulations
of a regular convex 2m-gon

Corollary

∆sym
m,k is a vertex-decomposable simplicial sphere.
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Universality and polytopality of ∆k
c (W )

Question (Knutson-Miller, 2004)

Charaterize all simplicial spheres that can be realized as a subword
complex.

Theorem (CLS, 2013)

A simplicial sphere it is the link
is realized as ⇐⇒ of a face of a multi-cluster

a subword complex complex ∆k
c (W ).

Corollary

The following two statements are equivalent.

(i) Every spherical subword complex is polytopal.

(ii) Every multi-cluster complex is polytopal.
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Polytopality of multi-cluster complexes

Conjecture (⇒ Knutson-Miller’04, Jonsson’05, Soll-Welker’09)

The multi-cluster complex is the boundary complex of a simplicial
polytope.

I True for k = 1: Chapoton-Fomin-Zelevinsky,
Hohlweg-Lange-Thomas, Pilaud-Stump, Stella

I True for I2(m), k ≥ 1: cyclic polytope, Ceballos-L.-Stump

I True for A3, k = 2: Bokowski-Pilaud, Ceballos-L.

Recent work of Bergeron-Ceballos-L.:

I New combinatorial construction giving 60000+ realizations of
A3, k = 2

I Fan realizations of all subword complexes of type A3
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Thanks!

Merci! Thank you! Grazie! Danke! Gracias!
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Recent developments on limit roots

; Relation with the Tits cone [Dyer-Hohlweg-Ripoll, (arxiv:2013)]

; Limit set of Kleinian groups [Hohlweg-Préaux-Ripoll,
(arxiv:2013)]

; Sphere packings and geometric invariants for Coxeter groups
[Chen-L., (in preparation)]
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; Generalized brick polytope, spanning trees [Pilaud-Stump,
arxiv:2011-12]

; Denominator vectors of cluster algebras of finite types
[Ceballos-Pilaud, (arxiv:2013)]

; Common vertices of permutahedra and generalized associahedra
[L., 2013 and L.-Lange (in preparation)]



Geometric computation of the join

α̂s α̂t

α̂u

ŝ(αu)

û(αs) û(αt)

ŝu(αt)

ût(αs)
ût(αu)
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