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Definitions and MotivationDefinitions and Motivation

Definition
A kaleidoscope is a cylinder with mirrors containing loose, colored objects such
as beads or pebbles and bits of glass.

A Kaleidoscope operates on the principle of multiple reflection, where several
mirrors are placed at an angle to one another, usually 60. Typically there are
three rectangular mirrors. Setting the mirrors at a 60 so that they form a
triangle. As the tube is rotated, the tumbling of the coloured objects presents
varying colours and patterns. Arbitrary patterns shows up as a beautiful
symmetrical pattern created by the reflections. A two-mirror kaleidoscope
yields a pattern or patterns isolated against a solid black background, while the
three-mirror (closed triangle) type yields a pattern that fills the entire field.

Definition
In group theory and geometry, a reflection group is a discrete group which is
generated by a set of reflections of a finite-dimensional Euclidean space.

Definition
A root system Φ is a finite set of non-zero vectors of V satisfying the
conditions:

(R1) Φ ∩ Rα = {α,−α} for all α ∈ Φ;

(R2) sαΦ = Φ for all α ∈ Φ.
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Kaleidoscopes in higher dimensions

Let P be a n-dimensional polytope

Question
When is the number of mirror-images finite?
or equivalently: when is the exchange group W (P) finite?
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Bored already?

Task
Obtain a non-regular pentagon with finite W (P).

Task (Bonus)

Obtain infinitely many non-regular pentagons with finite W (P).
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In this talk

As we will see, polytopes P with finite exchange group W (P) are
abundant.

I A necessary geometric condition

I A method to construct many examples (; matroids and flag
matroids)

I Characterization of Gelfand–Serganova (Type A)

I Symmetric groups and matroids (; Coxeter matroids)

I Characterization of all polytopes with finite exchange group

This is the object of Gelfand–Serganova’s Theorem on Coxeter
matroids.
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A necessary geometric condition

The exchange group W (P) is a Euclidean reflection group.

Coxeter groups are abstract groups obtained from generators and
relations:

〈S |e = s2 = (st)ms,t ; ∀s, t ∈ S〉

Theorem (Coxeter (1934))

Finite Euclidean reflection groups are exactly finite Coxeter groups.

The classification: An,Bn,Dn,E6,E7,E8,F4,H3,H4, I2(m).

Therefore, if W (P) is finite, it is a subgroup of one of the above.



A necessary geometric condition

The exchange group W (P) is a Euclidean reflection group.

Coxeter groups are abstract groups obtained from generators and
relations:

〈S |e = s2 = (st)ms,t ; ∀s, t ∈ S〉

Theorem (Coxeter (1934))

Finite Euclidean reflection groups are exactly finite Coxeter groups.

The classification: An,Bn,Dn,E6,E7,E8,F4,H3,H4, I2(m).

Therefore, if W (P) is finite, it is a subgroup of one of the above.



A necessary geometric condition

The exchange group W (P) is a Euclidean reflection group.

Coxeter groups are abstract groups obtained from generators and
relations:

〈S |e = s2 = (st)ms,t ; ∀s, t ∈ S〉

Theorem (Coxeter (1934))

Finite Euclidean reflection groups are exactly finite Coxeter groups.

The classification: An,Bn,Dn,E6,E7,E8,F4,H3,H4, I2(m).

Therefore, if W (P) is finite, it is a subgroup of one of the above.



A necessary geometric condition

The exchange group W (P) is a Euclidean reflection group.

Coxeter groups are abstract groups obtained from generators and
relations:

〈S |e = s2 = (st)ms,t ; ∀s, t ∈ S〉

Theorem (Coxeter (1934))

Finite Euclidean reflection groups are exactly finite Coxeter groups.

The classification: An,Bn,Dn,E6,E7,E8,F4,H3,H4, I2(m).

Therefore, if W (P) is finite, it is a subgroup of one of the above.



A necessary geometric condition – Root systems

Root system Φ: a set of non-zero vectors of a Euclidean vector
space V that stabilized by its orthogonal reflections.
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A necessary geometric condition – Φ-polytopes

Φ-polytope: A polytope whose edges are parallel to roots of a root
system Φ.

If the exchange group W (P) is finite, then P is a Φ-polytope.

Caution: The converse is false!
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Matroids through Gale ordering

Definition
Let Pn,k be the collection of all k-element subsets in [n] and

A = {i1, . . . , ik}, i1 < i2 < · · · < ik ,

B = {j1, . . . , jk}, j1 < j2 < · · · < jk .

Then A ≤ B ⇐⇒ i1 ≤ j1, . . . , ik ≤ jk .

Example

Let n = 5 and k = 3, then {1, 3, 4} ≤ {1, 3, 5} and
{1, 3, 5} 6≤ {2, 3, 4}.
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Matroids through Gale ordering

Definition (Gale ordering induced by w)

Let Pn,k be the collection of all k-element subsets in [n], w ∈ Sn
and

A = {i1, . . . , ik}, i1 < i2 < · · · < ik ,

B = {j1, . . . , jk}, j1 < j2 < · · · < jk .

Then A ≤w B ⇐⇒ w−1A ≤ w−1B.

Example

Let n = 5, k = 3 and w = [1, 2, 3, 5, 4] then {1, 3, 4} 6≤w {1, 3, 5}
and {1, 3, 5} ≤w {2, 3, 4}.
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Matroids and Flag matroids – A primer

Maximality Property

For every w ∈ Sn, the collection B ⊆ Pn,k contains a unique
member A ∈ B maximal in B with respect to ≤w .

Definition (Gale (1968))

Let B ⊆ Pn,k . Then B is a matroid if and only if B satisfies the
Maximality Property.
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Examples of matroids

Let n = 4.

Example

For k = 1 and B1 = {1, 3, 4}

Example

For k = 2 and B2 = {12, 14, 23, 24, 34}

Example

For k = 3 and B3 = {123, 124, 134}.
For w = [1, 2, 3, 4] the maximal element is 134.
For w = [1, 3, 2, 4] the maximal element is 124.



Flag matroids

A flag F is a strictly increasing sequence

F1 ⊂ F2 ⊂ · · · ⊂ Fm

of finite sets of cardinality k1 ≤ k2 ≤ · · · ≤ km.

Extend the Gale ordering from k-subsets to flags:

F ≤w G ⇐⇒ Fi ≤w Gi for all 1 ≤ i ≤ m.

Definition
A collection F of flags is a flag matroid if and only if F satisfies
the Maximality property:

For every w ∈ Sn the collection contains a unique element in F
with respect to the ordering ≤w .
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An example of flag matroid

Take again n = 4 and B1 = {1, 3, 4}, B2 = {12, 14, 23, 24, 34}, and
B3 = {123, 124, 134}.

{1} {3} {4}

{1, 2} {1, 4} {2, 3} {2, 4} {3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4}

B1

B2

B3

F = {123, 124, 142, 143, 321, 341, 412, 413, 421, 431}
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Flag matroids ; polytopes

V – Euclidean vector space, dim(V ) = n, basis {εi |i ∈ [n]}.

For a subset A = {a1, . . . , ak} ∈ 2[n], let

δA = εa1 + · · ·+ εak

For a flag F = (F1, . . . ,Fm), let

δF = δF1 + · · ·+ δFm

Finally, for any set of flags F , let

∆F = conv{δF |F ∈ F}.
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Example of polytope from a flag matroid

F = {123, 124, 142, 143, 321, 341, 412, 413, 421, 431}

1

2 3

4

∆F = conv{(3, 2, 1, 0), (3, 2, 0, 1), (3, 1, 0, 2), (3, 0, 1, 2), (1, 2, 3, 0),
(1, 0, 3, 2), (2, 1, 0, 3), (2, 0, 1, 3), (1, 2, 0, 3), (1, 0, 2, 3)}
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Gelfand–Serganova’s Theorem (Type A)

Theorem (Gelfand–Serganova, (1987))

Let F be a set of flags with cardinality k1, . . . , km on [n]. The
following conditions are equivalent:

1) F is a flag matroid.

2) W (∆F ) ≤ Sn.

Corollary

Let P be a polytope. The following conditions are equivalent:

1) W (P) ≤ Sn.

2) P is a ΦAn−1-polytope with vertices equidistant to a point p.
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Counter-example explained



Proof – Sketch

F is a flag matroid =⇒ W (∆F ) ≤ Sn
i) Vertices of ∆F are equidistant from the origin

iia) Assume that an edge {u, v} is not parallel to a certain root

iib) Order the basis according to a linear function

iic) Ordering on the vector space ←→ Gale ordering on subsets

iid) Contradict the Maximality Property with the flags u and v

iii) The group W (∆F ) is a reflection subgroup of Sn
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Proof – Sketch

W (∆F ) ≤ Sn =⇒ F is a flag matroid

ia) Equivalence of Gale ordering and ordering on roots

ib) Uses the fact that there is point equidistant to the vertices

ii) Prove the Increasing Exchange Property

iii) Prove that IEP =⇒ Maximality Property
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Symmetric groups ←→ Matroids

Consider Sn and the subgroup Pk generated by

(1 2), . . . , (k − 1 k),�����(k k + 1), (k + 1 k + 2), . . . , (n − 1 n).

Fact
k-subsets of n ←→ cosets Sn/Pk .

Example

Let n = 4 and k = 2.

{1, 2}←→[{1,2},{3,4}] {2, 3}←→[{2,3},{1,4}]
{1, 3}←→[{1,3},{2,4}] {2, 4}←→[{2,4},{1,3}]
{1, 4}←→[{1,4},{2,3}] {3, 4}←→[{3,4},{1,2}]
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Gale order ←→ Bruhat order

Definition (Bruhat order)

Let u, v ∈ Sn. Then u ≤B v ⇐⇒ u is a subword of v .

Example

tut and stusts.

Similarly, the w -Bruhat order: u ≤w
B v ⇐⇒ w−1u ≤B w−1v .

Theorem
Let Fk1k2···km

n be the set of flags of cardinality k1, k2, . . . , km. Then

(Pn,k ,≤w ) ∼= (Sn/Pk ,≤w
B )

and

(Fk1k2···km
n ,≤w ) ∼= (Sn/Pk1,k2,...,km ,≤w

B )
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Coxeter matroids

Take a finite Coxeter group W and a standard parabolic
subgroup P.

Definition
A collection M⊆W /P is a Coxeter matroid for W and P if and
only if it satisfies the Maximality Property:

For any w ∈W the collection M contains a unique element in M
with respect to the ordering ≤w

B .

Theorem (Gelfand–Serganova, (1987))

Let M⊆W /P. The following conditions are equivalent:

1) M is a Coxeter matroid.

2) W (∆M) ≤W .



Coxeter matroids

Take a finite Coxeter group W and a standard parabolic
subgroup P.

Definition
A collection M⊆W /P is a Coxeter matroid for W and P if and
only if it satisfies the Maximality Property:

For any w ∈W the collection M contains a unique element in M
with respect to the ordering ≤w

B .

Theorem (Gelfand–Serganova, (1987))

Let M⊆W /P. The following conditions are equivalent:

1) M is a Coxeter matroid.

2) W (∆M) ≤W .



Coxeter matroids

Take a finite Coxeter group W and a standard parabolic
subgroup P.

Definition
A collection M⊆W /P is a Coxeter matroid for W and P if and
only if it satisfies the Maximality Property:

For any w ∈W the collection M contains a unique element in M
with respect to the ordering ≤w

B .

Theorem (Gelfand–Serganova, (1987))

Let M⊆W /P. The following conditions are equivalent:

1) M is a Coxeter matroid.

2) W (∆M) ≤W .



Solution to the Problem

Let P be a d-dimensional polytope. The following conditions are
equivalent

I W (P) is finite.

I P is a Φ-polytope with vertices equidistant to a point p.

I The vertices of P correspond to a collection of cosets forming
a Coxeter matroid.
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Intermede – Solutions to the puzzles

Task
Obtain a non-regular pentagon with finite W (P).

Task (Bonus)

Obtain infinitely many non-regular pentagons with finite W (P).
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Merci! Thank you! Grazie! Danke! Gracias!

A H3 matroid polytope



Increasing Exchange Property

Increasing Property

If F1, F2 are two different flags from F and w ∈ Sn, then there is a
transposition t ∈ Sn such that for one of the flags F1, F2, say Fi ,
Fi <

w tFi and tFi also belongs to F .


